

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	h11 0.5.0 documentation

h11: A pure-Python HTTP/1.1 protocol library

h11 is an HTTP/1.1 protocol library written in Python, heavily inspired
by hyper-h2 [https://hyper-h2.readthedocs.io/].

h11’s goal is to be a simple, robust, complete, and non-hacky
implementation of the first “chapter” of the HTTP/1.1 spec: RFC 7230:
HTTP/1.1 Message Syntax and Routing [https://tools.ietf.org/html/rfc7230]. That is, it mostly focuses on
implementing HTTP at the level of taking bytes on and off the wire,
and the headers related to that, and tries to be picky about spec
conformance when possible. It doesn’t know about higher-level concerns
like URL routing, conditional GETs, cross-origin cookie policies, or
content negotiation. But it does know how to take care of framing,
cross-version differences in keep-alive handling, and the “obsolete
line folding” rule, and to use bounded time and space to process even
pathological / malicious input, so that you can focus your energies on
the hard / interesting parts for your application. And it tries to
support the full specification in the sense that any useful HTTP/1.1
conformant application should be able to use h11.

This is a “bring-your-own-I/O” protocol library; like h2, it contains
no IO code whatsoever. This means you can hook h11 up to your favorite
network API, and that could be anything you want: synchronous,
threaded, asynchronous, or your own implementation of RFC 6214 [https://tools.ietf.org/html/rfc6214] – h11 won’t judge you. This
is h11’s main feature compared to the current state of the art, where
every HTTP library is tightly bound to a particular network framework,
and every time a new network API [https://curio.readthedocs.io/]
comes along then someone has to start over reimplementing the entire
HTTP stack from scratch. We highly recommend Cory Benfield’s
excellent blog post about the advantages of this approach [https://lukasa.co.uk/2015/10/The_New_Hyper/].

This also means that h11 is not immediately useful out of the box:
it’s a toolkit for building programs that speak HTTP, not something
that could directly replace requests or twisted.web or
whatever. But h11 makes it much easier to implement something like
requests or twisted.web.

Vital statistics:

	Requirements: Python 2.7 or Python 3.3+, including PyPy

	Install: not yet

	Source: https://github.com/njsmith/h11

	Docs: https://h11.readthedocs.io

	License: MIT

	Code of conduct: Contributors are requested to follow our code of
conduct [https://github.com/njsmith/h11/blob/master/CODE_OF_CONDUCT.md] in
all project spaces.

Contents

	Getting started: Writing your own HTTP/1.1 client
	HTTP basics

	A basic client object

	Keep-alive

	What’s next?

	API documentation
	Events

	The state machine

	The Connection object

	Error handling

	Message body framing: Content-Length and all that

	Re-using a connection: keep-alive and pipelining

	Flow control

	Closing connections

	Switching protocols

	Support for sendfile()

	Identifying h11 in requests and responses

	Details of our HTTP support for HTTP nerds

	History of changes
	v0.5.0

 Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	h11 0.5.0 documentation

Getting started: Writing your own HTTP/1.1 client

h11 can be used to implement both HTTP/1.1 clients and servers. To
give a flavor for how the API works, we’ll demonstrate a small
client.

HTTP basics

An HTTP interaction always starts with a client sending a request,
optionally some data (e.g., a POST body); and then the server
responds with a response and optionally some data (e.g. the
requested document). Requests and responses have some data associated
with them: for requests, this is a method (e.g. GET), a target
(e.g. /index.html), and a collection of headers
(e.g. User-agent: demo-clent). For responses, it’s a status code
(e.g. 404 Not Found) and a collection of headers.

Of course, as far as the network is concerned, there’s no such thing
as “requests” and “responses” – there’s just bytes being sent from
one computer to another. Let’s see what this looks like, by fetching
https://httpbin.org/xml:

In [1]: import ssl, socket

In [2]: ctx = ssl.create_default_context()

In [3]: sock = ctx.wrap_socket(socket.create_connection(("httpbin.org", 443)),
 ...: server_hostname="httpbin.org")
 ...:

Send request
In [4]: sock.sendall(b"GET /xml HTTP/1.1\r\nhost: httpbin.org\r\n\r\n")
Out[4]: 40

Read response
In [5]: response_data = sock.recv(1024)

Let's see what we got!
In [6]: print(response_data)
b'HTTP/1.1 200 OK\r\nServer: nginx\r\nDate: Sat, 14 May 2016 01:32:30 GMT\r\nContent-Type: application/xml\r\nContent-Length: 522\r\nConnection: keep-alive\r\nAccess-Control-Allow-Origin: *\r\nAccess-Control-Allow-Credentials: true\r\n\r\n<?xml version=\'1.0\' encoding=\'us-ascii\'?>\n\n<!-- A SAMPLE set of slides -->\n\n<slideshow \n title="Sample Slide Show"\n date="Date of publication"\n author="Yours Truly"\n >\n\n <!-- TITLE SLIDE -->\n <slide type="all">\n <title>Wake up to WonderWidgets!</title>\n </slide>\n\n <!-- OVERVIEW -->\n <slide type="all">\n <title>Overview</title>\n <item>Why WonderWidgets are great</item>\n <item/>\n <item>Who buys WonderWidgets</item>\n </slide>\n\n</slideshow>'

So that’s, uh, very convenient and readable. It’s a little more
understandable if we print the bytes as text:

In [7]: print(response_data.decode("ascii"))
HTTP/1.1 200 OK
Server: nginx
Date: Sat, 14 May 2016 01:32:30 GMT
Content-Type: application/xml
Content-Length: 522
Connection: keep-alive
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

<?xml version='1.0' encoding='us-ascii'?>

<!-- A SAMPLE set of slides -->

<slideshow
 title="Sample Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item/>
 <item>Who buys WonderWidgets</item>
 </slide>

</slideshow>

Here we can see the status code at the top (200, which is the code for
“OK”), followed by the headers, followed by the data (a silly little
XML document). But we can already see that working with bytes by hand
like this is really cumbersome. What we need to do is to move up to a
higher level of abstraction.

This is what h11 does. Instead of talking in bytes, it lets you talk
in high-level HTTP “events”. To see what this means, let’s repeat the
above exercise, but using h11. We start by making a TLS connection
like before, but now we’ll also import h11, and create a
h11.Connection object:

In [8]: import ssl, socket

In [9]: import h11

In [10]: ctx = ssl.create_default_context()

In [11]: sock = ctx.wrap_socket(socket.create_connection(("httpbin.org", 443)),
 : server_hostname="httpbin.org")
 :

In [12]: conn = h11.Connection(our_role=h11.CLIENT)

Next, to send an event to the server, there are three steps we have to
take. First, we create an object representing the event we want to
send – in this case, a h11.Request:

In [13]: request = h11.Request(method="GET",
 : target="/xml",
 : headers=[("Host", "httpbin.org")])
 :

Next, we pass this to our connection’s send()
method, which gives us back the bytes corresponding to this message:

In [14]: bytes_to_send = conn.send(request)

And then we send these bytes across the network:

In [15]: sock.sendall(bytes_to_send)
Out[15]: 40

There’s nothing magical here – these are the same bytes that we sent
up above:

In [16]: bytes_to_send
Out[16]: b'GET /xml HTTP/1.1\r\nhost: httpbin.org\r\n\r\n'

Why doesn’t h11 go ahead and send the bytes for you? Because it’s
designed to be usable no matter what socket API you’re using –
doesn’t matter if it’s synchronous like this, asynchronous,
callback-based, whatever; if you can read and write bytes from the
network, then you can use h11.

In this case, we’re not quite done yet – we have to send another
event to tell the other side that we’re finished, which we do by
sending an EndOfMessage event:

In [17]: end_of_message_bytes_to_send = conn.send(h11.EndOfMessage())

In [18]: sock.sendall(end_of_message_bytes_to_send)
Out[18]: 0

Of course, it turns out that in this case, the HTTP/1.1 specification
tells us that any request that doesn’t contain either a
Content-Length or Transfer-Encoding header automatically has a
0 length body, and h11 knows that, and h11 knows that the server knows
that, so it actually encoded the EndOfMessage event as the
empty string:

In [19]: end_of_message_bytes_to_send
Out[19]: b''

But there are other cases where it might not, depending on what
headers are set, what message is being responded to, the HTTP version
of the remote peer, etc. etc. So for consistency, h11 requires that
you always finish your messages by sending an explicit
EndOfMessage event; then it keeps track of the details of
what that actually means in any given situation, so that you don’t
have to.

Finally, we have to read the server’s reply. By now you can probably
guess how this is done: we read some bytes from the network, then we
hand them to Connection.receive_data() and it gives us back
high-level events from the server.

In [20]: bytes_received = sock.recv(1024)

In [21]: events_received = conn.receive_data(bytes_received)

In [22]: events_received
Out[22]:
[Response(status_code=200, headers=[(b'server', b'nginx'), (b'date', b'Sat, 14 May 2016 01:32:30 GMT'), (b'content-type', b'application/xml'), (b'content-length', b'522'), (b'connection', b'keep-alive'), (b'access-control-allow-origin', b'*'), (b'access-control-allow-credentials', b'true')], http_version=b'1.1'),
 Data(data=bytearray(b'<?xml version=\'1.0\' encoding=\'us-ascii\'?>\n\n<!-- A SAMPLE set of slides -->\n\n<slideshow \n title="Sample Slide Show"\n date="Date of publication"\n author="Yours Truly"\n >\n\n <!-- TITLE SLIDE -->\n <slide type="all">\n <title>Wake up to WonderWidgets!</title>\n </slide>\n\n <!-- OVERVIEW -->\n <slide type="all">\n <title>Overview</title>\n <item>Why WonderWidgets are great</item>\n <item/>\n <item>Who buys WonderWidgets</item>\n </slide>\n\n</slideshow>')),
 EndOfMessage(headers=[])]

Here the server sent us three events: a Response object,
which is similar to the Request object that we created
earlier and has the response’s status code (200 OK) and headers; a
Data object containing the response data; and another
EndOfMessage object. This similarity between what we send and
what we receive isn’t accidental: if we were using h11 to write an HTTP
server, then these are the objects we would have created and passed to
send() – h11 in client and server mode has an API
that’s almost exactly symmetric.

A basic client object

To make this a little more convenient to play with, we can wrap up our
socket and Connection into a single object with some
convenience methods:

import socket, ssl
import h11

class MyHttpClient:
 def __init__(self, host, port):
 self.sock = socket.create_connection((host, port))
 if port == 443:
 self.sock = ssl.wrap_socket(self.sock)
 self.conn = h11.Connection(our_role=h11.CLIENT)

 def send(self, *events):
 for event in events:
 data = self.conn.send(event)
 if data is None:
 # event was a ConnectionClosed(), meaning that we won't be
 # sending any more data:
 self.sock.shutdown(socket.SHUT_WR)
 else:
 self.sock.sendall(data)

 # max_bytes set intentionally small for pedagogical purposes
 def receive(self, max_bytes=200):
 return self.conn.receive_data(self.sock.recv(max_bytes))

And then we can send requests:

In [23]: client = MyHttpClient("httpbin.org", 443)

In [24]: client.send(h11.Request(method="GET", target="/xml",
 : headers=[("Host", "httpbin.org")]),
 : h11.EndOfMessage())
 :

And read back the events:

In [25]: client.receive()
Out[25]: []

What happened here? We only read a max of 200 bytes from the socket
(see max_bytes= above), and it turns out that this wasn’t enough
to form a complete event. This happens all the time in real life, due
to slow networks or whatever – data trickles in at its own pace. When
this happens, h11 buffers the unprocessed data internally, and if you
keep reading then eventually you’ll get a complete event:

In [26]: client.receive()
Out[26]:
[Response(status_code=200, headers=[(b'server', b'nginx'), (b'date', b'Sat, 14 May 2016 01:32:30 GMT'), (b'content-type', b'application/xml'), (b'content-length', b'522'), (b'connection', b'keep-alive'), (b'access-control-allow-origin', b'*'), (b'access-control-allow-credentials', b'true')], http_version=b'1.1'),
 Data(data=bytearray(b'<?xml version=\'1.0\' encoding=\'us-ascii\'?>\n\n<!-- A SAMPLE set of slides -->\n\n<slideshow \n title="Sample Slide Show"\n date="Date of publication"\n author="Yours Truly"\n >'))]

Note here that we received a Data event that only has part
of the response body – h11 streams out data as it arrives, which
might mean that you receive multiple Data events. (Of course,
if you’re the one sending data, you can do the same thing: instead of
buffering all your data in one giant Data event, you can send
multiple Data events yourself to stream the data out
incrementally; just make sure that you set the appropriate
Content-Length / Transfer-Encoding headers.) If we keep
reading, we’ll see more Data events, and then eventually the
EndOfMessage:

In [27]: client.receive()
Out[27]: [Data(data=bytearray(b'\n\n <!-- TITLE SLIDE -->\n <slide type="all">\n <title>Wake up to WonderWidgets!</title>\n </slide>\n\n <!-- OVERVIEW -->\n <slide type="all">\n <title>Overview</title>\n <ite'))]

In [28]: client.receive()

 API documentation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	h11 0.5.0 documentation

API documentation

Contents

	API documentation
	Events

	The state machine

	The Connection object

	Error handling

	Message body framing: Content-Length and all that

	Re-using a connection: keep-alive and pipelining

	Flow control

	Closing connections

	Switching protocols

	Support for sendfile()

	Identifying h11 in requests and responses

h11 has a fairly small public API, with all public symbols available
directly at the top level:

In [1]: import h11

In [2]: h11.<TAB>
h11.CLIENT h11.MUST_CLOSE
h11.CLOSED h11.Paused
h11.Connection h11.PRODUCT_ID
h11.ConnectionClosed h11.ProtocolError
h11.Data h11.Request
h11.DONE h11.Response
h11.EndOfMessage h11.SEND_BODY
h11.ERROR h11.SEND_RESPONSE
h11.IDLE h11.SERVER
h11.InformationalResponse h11.SWITCHED_PROTOCOL
h11.MIGHT_SWITCH_PROTOCOL

These symbols fall into three main categories: event classes, special
constants used to track different connection states, and the
Connection class itself. We’ll describe them in that order.

Events

Events are the core of h11: the whole point of h11 is to let you
think about HTTP transactions as being a series of events sent back
and forth between a client and a server, instead of thinking in terms
of bytes.

All events behave in essentially similar ways. Let’s take
Request as an example. Like all events, this is a “final”
class – you cannot subclass it. And like all events, it has several
fields. For Request, there are four of them:
method, target`,
headers`, and
http_version`. http_version`
defaults to b"1.1"; the rest have no default, so to create a
Request you have to specify their values:

In [3]: req = h11.Request(method="GET",
 ...: target="/",
 ...: headers=[("Host", "example.com")])
 ...:

Event constructors accept only keyword arguments, not positional arguments.

Events have a useful repr:

In [4]: req
Out[4]: Request(method=b'GET', target=b'/', headers=[(b'host', b'example.com')], http_version=b'1.1')

And their fields are available as regular attributes:

In [5]: req.method
Out[5]: b'GET'

In [6]: req.target

 Details of our HTTP support for HTTP nerds

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	h11 0.5.0 documentation

Details of our HTTP support for HTTP nerds

h11 only speaks HTTP/1.1. It can talk to HTTP/1.0 clients and servers,
but it itself only does HTTP/1.1.

We fully support HTTP/1.1 keep-alive.

We have a little bit of support for HTTP/1.1 pipelining – basically
the minimum that’s required by the standard. In server mode we can
handle pipelined requests in a serial manner, responding completely to
each request before reading the next (and our API is designed to make
it easy for servers to keep this straight). Client mode doesn’t
support pipelining at all. As far as I can tell, this matches the
state of the art in all the major HTTP implementations: the consensus
seems to be that HTTP/1.1 pipelining was a nice try but unworkable in
practice, and if you really need pipelining to work then instead of
trying to fix HTTP/1.1 you should switch to HTTP/2.0.

The HTTP/1.0 Connection: keep-alive pseudo-standard is currently
not supported. (Note that this only affects h11 as a server, because
h11 as a client always speaks HTTP/1.1.) Supporting this would be
possible, but it’s fragile and finicky and I’m suspicious that if we
leave it out then no-one will notice or care. HTTP/1.1 is now almost
old enough to vote in United States elections. I get that people
sometimes write HTTP/1.0 clients because they don’t want to deal with
annoying stuff like chunked encoding, and I completely sympathize with
that, but I’m guessing that you’re not going to find too many people
these days who care desperately about keep-alive and at the same
time are too lazy to implement Transfer-Encoding: chunked. Still,
this would be my bet as to the missing feature that people are most
likely to eventually complain about...

Of the headers defined in RFC 7230, the ones h11 knows and has some
special-case logic to care about are: Connection:,
Transfer-Encoding:, Content-Length:, Host:, Upgrade:,
and Expect: (which is really from RFC 7231 [https://tools.ietf.org/html/rfc7231#section-5.1.1] but
whatever). The other headers in RFC 7230 are TE:, Trailer:,
and Via:; h11 also supports these in the sense that it ignores
them and that’s really all it should be doing.

Transfer-Encoding support: we only know chunked, not gzip or
deflate. We’re in good company in this: node.js at least doesn’t
handle anything besides chunked either. So I’m not too worried
about this being a problem in practice. But I’m not majorly opposed to
adding support for more features here either.

A quirk in our Response encoding: we don’t bother including
ascii status messages – instead of 200 OK we just say
200. This is totally legal and no program should care, and it lets
us skip carrying around a pointless table of status message strings,
but I suppose it might be worth fixing at some point.

When parsing chunked encoding, we parse but discard “chunk
extensions”. This is an extremely obscure feature that allows
arbitrary metadata to be interleaved into a chunked transfer
stream. This metadata has no standard uses, and proxies are allowed to
strip it out. I don’t think anyone will notice this lack, but it could
be added if someone really wants it; I just ran out of energy for
implementing weirdo features no-one uses.

Currently we do implement support for “obsolete line folding” when
reading HTTP headers. This is an optional part of the spec –
conforming HTTP/1.1 implementations MUST NOT send continuation lines,
and conforming HTTP/1.1 servers MAY send 400 Bad Request responses
back at clients who do send them (ref [https://tools.ietf.org/html/rfc7230#section-3.2.4]). I’m tempted to
remove this support, since it adds some complicated and ugly code
right at the center of the request/response parsing loop, and I’m not
sure whether anyone actually needs it. Unfortunately a few major
implementations that I spot-checked (node.js, go) do still seem to
support reading such headers (but not generating them), so it might or
might not be obsolete in practice – it’s hard to know.

 Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

 History of changes

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	h11 0.5.0 documentation

History of changes

v0.5.0

	Initial release.

 Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	h11 0.5.0 documentation

 Python Module Index

 h

 			

 		
 h	

 	
 	
 h11	

 Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

 Index

 Navigation

 	
 index

 	
 modules |

 	h11 0.5.0 documentation

Index

 C
 | D
 | E
 | H
 | I
 | M
 | O
 | P
 | R
 | S
 | T

C

 	

 	CLIENT (in module h11)

 	client_is_waiting_for_100_continue (h11.Connection attribute)

 	CLOSED (in module h11)

 	

 	Connection (class in h11)

 	ConnectionClosed (class in h11)

D

 	

 	Data (class in h11)

 	

 	DONE (in module h11)

E

 	

 	EndOfMessage (class in h11)

 	ERROR (in module h11)

 	

 	error_status_hint (h11.ProtocolError attribute)

H

 	

 	h11 (module)

 	headers (h11.InformationalResponse attribute)

 	

 	(h11.Request attribute)

 	(h11.Response attribute)

 	

 	http_version (h11.InformationalResponse attribute)

 	

 	(h11.Request attribute)

 	(h11.Response attribute)

I

 	

 	IDLE (in module h11)

 	

 	InformationalResponse (class in h11)

M

 	

 	method (h11.Request attribute)

 	MIGHT_SWITCH_PROTOCOL (in module h11)

 	

 	MUST_CLOSE (in module h11)

O

 	

 	our_role (h11.Connection attribute)

 	

 	our_state (h11.Connection attribute)

P

 	

 	Paused (class in h11)

 	prepare_to_reuse() (h11.Connection method)

 	

 	PRODUCT_ID (in module h11)

 	ProtocolError

R

 	

 	reason (h11.Paused attribute)

 	receive_data() (h11.Connection method)

 	

 	Request (class in h11)

 	Response (class in h11)

S

 	

 	send() (h11.Connection method)

 	SEND_BODY (in module h11)

 	SEND_RESPONSE (in module h11)

 	send_with_data_passthrough() (h11.Connection method)

 	

 	SERVER (in module h11)

 	states (h11.Connection attribute)

 	status_code (h11.InformationalResponse attribute)

 	

 	(h11.Response attribute)

 	SWITCHED_PROTOCOL (in module h11)

T

 	

 	target (h11.Request attribute)

 	their_http_version (h11.Connection attribute)

 	their_role (h11.Connection attribute)

 	

 	their_state (h11.Connection attribute)

 	they_are_waiting_for_100_continue (h11.Connection attribute)

 	trailing_data (h11.Connection attribute)

 Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		h11 0.5.0 documentation »

 All modules for which code is available

		h11._connection

		h11._events

		h11._util

 © Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_modules/h11/_util.html

 Navigation

 		
 index

 		
 modules |

 		h11 0.5.0 documentation »

 		Module code »

 Source code for h11._util

__all__ = ["ProtocolError", "validate", "Sentinel", "bytesify"]

This indicates either that you tried to do something that HTTP/1.1 says is
illegal, or that your peer did. Either way, you should probably close the
connection and think things over.
[docs]class ProtocolError(Exception):
 """This exception indicates a violation of the HTTP/1.1 protocol.

 This might be because your perr tried to do something that HTTP/1.1 says
 is illegal (if it's raised by :meth:`Connection.receive_data`), or that
 you did. Either way, you should probably close the connection and think
 things over.

 In addition to the normal Exception features, it has one attribute:

 .. attribute:: error_status_hint

 If you're a server and you want to send an error response back to a
 naughty client, then this gives a suggestion as to which status code
 you might want to use. The default is 400 Bad Request, a generic
 catch-all for protocol violations.
 """
 def __init__(self, msg, error_status_hint=400):
 Exception.__init__(self, msg)
 self.error_status_hint = error_status_hint

def validate(regex, data, msg="malformed data"):
 match = regex.match(data)
 if not match:
 raise ProtocolError(msg)
 return match.groupdict()

Sentinel values
Inherits identity-based comparison and hashing from object
class Sentinel(object):
 def __init__(self, name):
 self._name = name

 def __repr__(self):
 return self._name

Used for methods, request targets, HTTP versions, header names, and header
values. Accepts ascii-strings, or bytes/bytearray/memoryview/..., and always
returns bytes.
def bytesify(s):
 if isinstance(s, str):
 s = s.encode("ascii")
 if isinstance(s, int):
 raise TypeError("expected bytes-like object, not int")
 return bytes(s)

 © Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

_static/up.png

_modules/h11/_events.html

 Navigation

 		
 index

 		
 modules |

 		h11 0.5.0 documentation »

 		Module code »

 Source code for h11._events

High level events that make up HTTP/1.1 conversations. Loosely inspired by
the corresponding events in hyper-h2:
#
http://python-hyper.org/h2/en/stable/api.html#events
#
Don't subclass these. Stuff will break.

from . import _headers
from ._util import bytesify, ProtocolError

Everything in __all__ gets re-exported as part of the h11 public API.
__all__ = [
 "Request",
 "InformationalResponse",
 "Response",
 "Data",
 "EndOfMessage",
 "ConnectionClosed",
 "Paused",
]

class _EventBundle(object):
 _fields = []
 _defaults = {}

 def __init__(self, **kwargs):
 allowed = set(self._fields)
 for kwarg in kwargs:
 if kwarg not in allowed:
 raise TypeError(
 "unrecognized kwarg {} for {}"
 .format(kwarg, self.__class__.__name__))
 required = allowed.difference(self._defaults)
 for field in required:
 if field not in kwargs:
 raise TypeError(
 "missing required kwarg {} for {}"
 .format(kwarg, self.__class__.__name__))
 self.__dict__.update(self._defaults)
 self.__dict__.update(kwargs)

 # Special handling for some fields

 if "headers" in self.__dict__:
 self.headers = _headers.normalize_and_validate(self.headers)

 for field in ["method", "target", "http_version"]:
 if field in self.__dict__:
 self.__dict__[field] = bytesify(self.__dict__[field])

 if "status_code" in self.__dict__:
 if not isinstance(self.status_code, int):
 raise ProtocolError("status code must be integer")

 self._validate()

 def _validate(self):
 pass

 def __repr__(self):
 name = self.__class__.__name__
 kwarg_strs = ["{}={}".format(field, self.__dict__[field])
 for field in self._fields]
 kwarg_str = ", ".join(kwarg_strs)
 return "{}({})".format(name, kwarg_str)

 # Useful for tests
 def __eq__(self, other):
 return (self.__class__ == other.__class__
 and self.__dict__ == other.__dict__)

 def __ne__(self, other):
 return not self.__eq__(other)

 # This is an unhashable type.
 __hash__ = None

[docs]class Request(_EventBundle):
 """The beginning of an HTTP request.

 Fields:

 .. attribute:: method

 An HTTP method, e.g. ``b"GET"`` or ``b"POST"``. Always a byte
 string. :term:`Bytes-like objects <bytes-like object>` and native
 strings containing only ascii characters will be automatically
 converted to byte strings.

 .. attribute:: target

 The target of an HTTP request, e.g. ``b"/index.html"``, or one of the
 more exotic formats described in `RFC 7320, section 5.3
 <https://tools.ietf.org/html/rfc7230#section-5.3>`_. Always a byte
 string. :term:`Bytes-like objects <bytes-like object>` and native
 strings containing only ascii characters will be automatically
 converted to byte strings.

 .. attribute:: headers

 Request headers, represented as a list of (name, value) pairs. See
 :ref:`the header normalization rules <headers-format>` for details.

 .. attribute:: http_version

 The HTTP protocol version, represented as a byte string like
 ``b"1.1"``. See :ref:`the HTTP version normalization rules
 <http_version-format>` for details.

 """

 _fields = ["method", "target", "headers", "http_version"]
 _defaults = {"http_version": b"1.1"}

 def _validate(self):
 if self.http_version == b"1.1":
 for name, value in self.headers:
 if name == b"host":
 break
 else:
 raise ProtocolError("Missing mandatory Host: header")

class _ResponseBase(_EventBundle):
 _fields = ["status_code", "headers", "http_version"]
 _defaults = {"http_version": b"1.1"}

[docs]class InformationalResponse(_ResponseBase):
 """An HTTP informational response.

 Fields:

 .. attribute:: status_code

 The status code of this response, as an integer. For an
 :class:`InformationalResponse`, this is always in the range [100,
 200).

 .. attribute:: headers

 Request headers, represented as a list of (name, value) pairs. See
 :ref:`the header normalization rules <headers-format>` for
 details.

 .. attribute:: http_version

 The HTTP protocol version, represented as a byte string like
 ``b"1.1"``. See :ref:`the HTTP version normalization rules
 <http_version-format>` for details.

 """

 def _validate(self):
 if not (100 <= self.status_code < 200):
 raise ProtocolError(
 "InformationalResponse status_code should be in range "
 "[100, 200), not {}"
 .format(self.status_code))

[docs]class Response(_ResponseBase):
 """The beginning of an HTTP response.

 Fields:

 .. attribute:: status_code

 The status code of this response, as an integer. For an
 :class:`Response`, this is always in the range [200,
 600).

 .. attribute:: headers

 Request headers, represented as a list of (name, value) pairs. See
 :ref:`the header normalization rules <headers-format>` for details.

 .. attribute:: http_version

 The HTTP protocol version, represented as a byte string like
 ``b"1.1"``. See :ref:`the HTTP version normalization rules
 <http_version-format>` for details.

 """
 def _validate(self):
 if not (200 <= self.status_code < 600):
 raise ProtocolError(
 "Response status_code should be in range [200, 600), not {}"
 .format(self.status_code))

[docs]class Data(_EventBundle):
 """Part of an HTTP message body.

 Fields:

 .. attribute: data

 A :term:`bytes-like object` containing part of a message body. Or, if
 using the ``combine=False`` argument to :meth:`Connection.send`, then
 any object that your socket writing code knows what to do with, and for
 which calling :func:`len` returns the number of bytes that will be
 written -- see :ref:`sendfile` for details.

 """
 _fields = ["data"]

XX FIXME: "A recipient MUST ignore (or consider as an error) any fields that
are forbidden to be sent in a trailer, since processing them as if they were
present in the header section might bypass external security filters."
https://svn.tools.ietf.org/svn/wg/httpbis/specs/rfc7230.html#chunked.trailer.part
Unfortunately, the list of forbidden fields is long and vague :-/
[docs]class EndOfMessage(_EventBundle):
 """The end of an HTTP message.

 Fields:

 .. attribute: headers

 Default value: ``[]``

 Any trailing headers attached to this message, represented as a list of
 (name, value) pairs. See :ref:`the header normalization rules
 <headers-format>` for details.

 Must be empty unless ``Transfer-Encoding: chunked`` is in use.

 """
 _fields = ["headers"]
 _defaults = {"headers": []}

[docs]class ConnectionClosed(_EventBundle):
 """This event indicates that the sender has closed their outgoing
 connection.

 Note that this does not necessarily mean that they can't *receive* further
 data, because TCP connections are composed to two one-way channels which
 can be closed independently. See :ref:`closing` for details.

 No fields.
 """
 pass

[docs]class Paused(_EventBundle):
 """A pseudo-event used for flow control.

 If :meth:`Connection.receive_data` returns this event, it means that the
 HTTP parser is in a paused condition, and won't process any new data until
 after the condition is resolved. See :ref:`flow-control` for details.

 .. attribute:: reason

 The remote peer's state that triggered the pause. One of:

 * :data:`h11.DONE`: a client has started sending another request before
 we finished responding to their first request. Cleared by finishing
 the response and then calling :meth:`Connection.prepare_to_reuse`.

 * :data:`MIGHT_SWITCH_PROTOCOL`: a client is in the
 :data:`MIGHT_SWITCH_PROTOCOL` state, and is waiting for the server to
 either accept or reject the proposed protocol switch. See
 :ref:`switching-protocols` for details.

 * :data:`SWITCHED_PROTOCOL`: the remote peer is the
 :data:`SWITCHED_PROTOCOL` state. h11 isn't going to parse any more
 data that they send, because they're no longer speaking HTTP. See
 :ref:`switching-protocols` for details.

 """

 _fields = ["reason"]

 © Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

_modules/h11/_connection.html

 Navigation

 		
 index

 		
 modules |

 		h11 0.5.0 documentation »

 		Module code »

 Source code for h11._connection

This contains the main Connection class. Everything in h11 revolves around
this.

Import all event types
from ._events import *
Import all state sentinels
from ._state import *
Import the internal things we need
from ._util import ProtocolError
from ._state import ConnectionState, _SWITCH_UPGRADE, _SWITCH_CONNECT
from ._headers import (
 get_comma_header, set_comma_header, has_expect_100_continue,
)
from ._receivebuffer import ReceiveBuffer
from ._readers import READERS
from ._writers import WRITERS

Everything in __all__ gets re-exported as part of the h11 public API.
__all__ = ["Connection"]

If we ever have this much buffered without it making a complete parseable
event, we error out. The only time we really buffer is when reading the
request/reponse line + headers together, so this is effectively the limit on
the size of that.
#
Some precedents for defaults:
- node.js: 80 * 1024
- tomcat: 8 * 1024
- IIS: 16 * 1024
- Apache: <8 KiB per line>
HTTP_DEFAULT_MAX_BUFFER_SIZE = 16 * 1024

RFC 7230's rules for connection lifecycles:
- If either side says they want to close the connection, then the connection
must close.
- HTTP/1.1 defaults to keep-alive unless someone says Connection: close
- HTTP/1.0 defaults to close unless both sides say Connection: keep-alive
(and even this is a mess -- e.g. if you're implementing a proxy then
sending Connection: keep-alive is forbidden).
#
We simplify life by simply not supporting keep-alive with HTTP/1.0 peers. So
our rule is:
- If someone says Connection: close, we will close
- If someone uses HTTP/1.0, we will close.
def _keep_alive(event):
 connection = get_comma_header(event.headers, "Connection")
 if b"close" in connection:
 return False
 if getattr(event, "http_version", b"1.1") < b"1.1":
 return False
 return True

def _body_framing(request_method, event):
 # Called when we enter SEND_BODY to figure out framing information for
 # this body.
 #
 # These are the only two events that can trigger a SEND_BODY state:
 assert type(event) in (Request, Response)
 # Returns one of:
 #
 # ("content-length", count)
 # ("chunked", ())
 # ("http/1.0", ())
 #
 # which are (lookup key, *args) for constructing body reader/writer
 # objects.
 #
 # Reference: https://tools.ietf.org/html/rfc7230#section-3.3.3
 #
 # Step 1: some responses always have an empty body, regardless of what the
 # headers say.
 if type(event) is Response:
 if (event.status_code in (204, 304)
 or request_method == b"HEAD"
 or (request_method == b"CONNECT"
 and 200 <= event.status_code < 300)):
 return ("content-length", (0,))
 # Section 3.3.3 also lists another case -- responses with status_code
 # < 200. For us these are InformationalResponses, not Responses, so
 # they can't get into this function in the first place.
 assert event.status_code >= 200

 # Step 2: check for Transfer-Encoding (T-E beats C-L):
 transfer_encodings = get_comma_header(event.headers, "Transfer-Encoding")
 if transfer_encodings:
 assert transfer_encodings == [b"chunked"]
 return ("chunked", ())

 # Step 3: check for Content-Length
 content_lengths = get_comma_header(event.headers, "Content-Length")
 if content_lengths:
 return ("content-length", (int(content_lengths[0]),))

 # Step 4: no applicable headers; fallback/default depends on type
 if type(event) is Request:
 return ("content-length", (0,))
 else:
 return ("http/1.0", ())

##
#
The main Connection class
#
##

[docs]class Connection(object):
 """An object encapsulating the state of an HTTP connection.

 Args:
 our_role: If you're implementing a client, pass :data:`h11.CLIENT`. If
 you're implementing a server, pass :data:`h11.SERVER`.

 max_buffer_size (int):
 The maximum number of bytes of received but unprocessed data we're
 willing to buffer. In practice this mostly sets a limit on the
 maximum size of the request/response line + headers. If this is
 exceeded, then :meth:`receive_data` will raise
 :exc:`ProtocolError`.

 """
 def __init__(self, our_role, max_buffer_size=HTTP_DEFAULT_MAX_BUFFER_SIZE):
 self._max_buffer_size = max_buffer_size
 # State and role tracking
 if our_role not in (CLIENT, SERVER):
 raise ValueError(
 "expected CLIENT or SERVER, not {!r}".format(our_role))
 self.our_role = our_role
 if our_role is CLIENT:
 self.their_role = SERVER
 else:
 self.their_role = CLIENT
 self._cstate = ConnectionState()

 # Callables for converting data->events or vice-versa given the
 # current state
 self._writer = self._get_io_object(self.our_role, None, WRITERS)
 self._reader = self._get_io_object(self.their_role, None, READERS)

 # Holds any unprocessed received data
 self._receive_buffer = ReceiveBuffer()
 # If this is true, then it indicates that the incoming connection was
 # closed *after* the end of whatever's in self._receive_buffer:
 self._receive_buffer_closed = False

 # Extra bits of state that don't fit into the state machine.
 #
 # These two are only used to interpret framing headers for figuring
 # out how to read/write response bodies. their_http_version is also
 # made available as a convenient public API.
 self.their_http_version = None
 self._request_method = None
 # This is pure flow-control and doesn't at all affect the set of legal
 # transitions, so no need to bother ConnectionState with it:
 self.client_is_waiting_for_100_continue = False

 @property
 def states(self):
 """A dictionary like::

 {CLIENT: <client state>, SERVER: <server state>}

 See :ref:`state-machine` for details.

 """
 return dict(self._cstate.states)

 @property
 def our_state(self):
 """The current state of whichever role we are playing. See
 :ref:`state-machine` for details.
 """
 return self._cstate.states[self.our_role]

 @property
 def their_state(self):
 """The current state of whichever role we are NOT playing. See
 :ref:`state-machine` for details.
 """
 return self._cstate.states[self.their_role]

 @property
 def they_are_waiting_for_100_continue(self):
 return (self.their_role is CLIENT
 and self.client_is_waiting_for_100_continue)

[docs] def prepare_to_reuse(self):
 """Attempt to reset our connection state for a new request/response
 cycle.

 If both client and server are in :data:`DONE` state, then resets them
 both to :data:`IDLE` state in preparation for a new request/response
 cycle on this same connection. Otherwise, raises a
 :exc:`ProtocolError`.

 See :ref:`keepalive-and-pipelining`.

 """
 old_states = dict(self._cstate.states)
 self._cstate.prepare_to_reuse()
 self._request_method = None
 # self.their_http_version gets left alone, since it presumably lasts
 # beyond a single request/response cycle
 assert not self.client_is_waiting_for_100_continue
 self._respond_to_state_changes(old_states)

 def _process_error(self, role):
 old_states = dict(self._cstate.states)
 self._cstate.process_error(role)
 self._respond_to_state_changes(old_states)

 def _client_switch_events(self, event):
 if event.method == b"CONNECT":
 yield _SWITCH_CONNECT
 if get_comma_header(event.headers, "Upgrade"):
 yield _SWITCH_UPGRADE

 def _server_switch_event(self, event):
 if type(event) is InformationalResponse and event.status_code == 101:
 return _SWITCH_UPGRADE
 if type(event) is Response:
 if (_SWITCH_CONNECT in self._cstate.pending_switch_proposals
 and 200 <= event.status_code < 300):
 return _SWITCH_CONNECT
 return None

 # All events go through here
 def _process_event(self, role, event):
 # First, pass the event through the state machine to make sure it
 # succeeds.
 old_states = dict(self._cstate.states)
 if role is CLIENT and type(event) is Request:
 switch_event_iter = self._client_switch_events(event)
 self._cstate.process_client_switch_proposals(switch_event_iter)
 server_switch_event = None
 if role is SERVER:
 server_switch_event = self._server_switch_event(event)
 self._cstate.process_event(role, type(event), server_switch_event)

 # Then perform the updates triggered by it.

 # self._request_method
 if type(event) is Request:
 self._request_method = event.method

 # self.their_http_version
 if (role is self.their_role
 and type(event) in (Request, Response, InformationalResponse)):
 self.their_http_version = event.http_version

 # Keep alive handling
 #
 # RFC 7230 doesn't really say what one should do if Connection: close
 # shows up on a 1xx InformationalResponse. I think the idea is that
 # this is not supposed to happen. In any case, if it does happen, we
 # ignore it.
 if type(event) in (Request, Response) and not _keep_alive(event):
 self._cstate.process_keep_alive_disabled()

 # 100-continue
 if type(event) is Request and has_expect_100_continue(event):
 self.client_is_waiting_for_100_continue = True
 if type(event) in (InformationalResponse, Response):
 self.client_is_waiting_for_100_continue = False
 if role is CLIENT and type(event) in (Data, EndOfMessage):
 self.client_is_waiting_for_100_continue = False

 self._respond_to_state_changes(old_states, event)

 def _get_io_object(self, role, event, io_dict):
 # event may be None; it's only used when entering SEND_BODY
 state = self._cstate.states[role]
 if state is SEND_BODY:
 # Special case: the io_dict has a dict of reader/writer factories
 # that depend on the request/response framing.
 framing_type, args = _body_framing(self._request_method, event)
 return io_dict[SEND_BODY][framing_type](*args)
 else:
 # General case: the io_dict just has the appropriate reader/writer
 # for this state
 return io_dict.get((role, state))

 # This must be called after any action that might have caused
 # self._cstate.states to change.
 def _respond_to_state_changes(self, old_states, event=None):
 # Update reader/writer
 if self.our_state != old_states[self.our_role]:
 self._writer = self._get_io_object(self.our_role, event, WRITERS)
 if self.their_state != old_states[self.their_role]:
 self._reader = self._get_io_object(self.their_role, event, READERS)

 @property
 def trailing_data(self):
 """Data that has been received, but not yet processed, represented as
 a tuple with two elements, where the first is a byte-string containing
 the unprocessed data itself, and the second is a bool that is True if
 the receive connection was closed.

 See :ref:`switching-protocols` for discussion of why you'd want this.
 """
 return (bytes(self._receive_buffer), self._receive_buffer_closed)

[docs] def receive_data(self, data):
 """Convert bytes received from the remote peer into high-level events,
 while updating our internal state machine.

 Args:
 data (:term:`bytes-like object`, or None):
 The new data that was just recieved.

 Normally, *data* is a :term:`bytes-like object` containing new
 data received from the peer. We append this to our internal
 receive buffer, and then check whether any new events can be
 parsed from it. We always parse and return as many events as
 possible.

 There are two important special cases:

 Special case 1: If *data* is an empty byte-string like
 ``b""``, then this indicates that the remote side has closed
 the connection (end of file). Normally this is convenient,
 because standard Python APIs like :meth:`file.read` or
 :meth:`socket.recv` use ``b""`` to indicate end-of-file, while
 other failures to read are indicated using other mechanisms
 like raising :exc:`TimeoutError`. When using such an API you
 can just blindly pass through whatever you get from ``read``
 to :meth:`receive_data`, and everything will work.

 But, if you have an API where reading an empty string is a
 valid non-EOF condition, then you need to be aware of this and
 make sure to check for such strings and avoid passing them to
 :meth:`receive_data`.

 Special case 2: If *data* is ``None``, then we don't add
 any data to the internal receive buffer, but we attempt to
 parse it again to see if we can pull any new events out.

 :meth:`receive_data` normally pulls out all possible events
 immediately, so this is only useful after calling
 :meth:`prepare_to_reuse` -- see
 :ref:`keepalive-and-pipelining` for details.

 Returns:
 A list of :ref:`event <events>` objects.

 Raises:
 ProtocolError:
 The peer has misbehaved. You should close the connection
 (possibly after sending some kind of 400 response).

 For robustness you might want to be prepared to catch other exceptions
 as well, but if this happens then please do file a bug report as well
 -- the intention is that :exc:`ProtocolError` is the *only* exception
 that this method should be able to raise.

 If this method raises any exception then it also sets
 :attr:`Connection.their_state` to :data:`ERROR` -- see
 :ref:`error-handling` for discussion.

 """

 if self.their_state is ERROR:
 raise ProtocolError("Can't receive data when peer state is ERROR")
 try:
 # Update self._receive_buffer with new data
 if data is not None:
 if data:
 if self._receive_buffer_closed:
 raise RuntimeError(
 "received close, then received more data?")
 self._receive_buffer += data
 else:
 self._receive_buffer_closed = True

 # Read out all the events we can
 events = []
 while True:
 event = self._next_receive_event()
 if event is None:
 break
 events.append(event)
 # The Paused pseudo-event doesn't go through the state
 # machine, because it's purely a local signal.
 if type(event) is Paused:
 break
 self._process_event(self.their_role, event)
 if type(event) is ConnectionClosed:
 break

 # Buffer maintainence
 self._receive_buffer.compress()
 if events and type(events[-1]) is Paused:
 # We don't enforce buffer size limits when Paused, because
 # avoiding ever-growing buffers here indicates a problem with
 # the user code, not with the remote client (and otherwise
 # it's entirely possible that a single receive_data call all
 # by itself could put us over the limit, with no real way to
 # avoid it)
 pass
 else:
 if len(self._receive_buffer) > self._max_buffer_size:
 # 431 is "Request header fields too large" which is pretty
 # much the only situation where we can get here
 raise ProtocolError("Receive buffer too long",
 error_status_hint=431)

 # We've greedily processed all possible events, so if there's no
 # more data coming, we better either be paused or else have
 # delivered that ConnectionClosed -- we don't want to hang forever
 # waiting for data that never arrives.
 if self._receive_buffer_closed:
 FINAL_EVENTS = {Paused, ConnectionClosed}
 if not events or type(events[-1]) not in FINAL_EVENTS:
 raise ProtocolError(
 "peer unexpectedly closed connection")

 # Return them
 return events
 except:
 self._process_error(self.their_role)
 raise

 def _next_receive_event(self):
 state = self.their_state
 # We don't pause immediately when they enter DONE, because even in
 # DONE state we can still process a ConnectionClosed() event. But
 # if we have data in our buffer, then we definitely aren't getting
 # a ConnectionClosed() immediately and we need to pause.
 if state is DONE and self._receive_buffer:
 return Paused(reason=state)
 if state is MIGHT_SWITCH_PROTOCOL or state is SWITCHED_PROTOCOL:
 return Paused(reason=state)
 assert self._reader is not None
 event = self._reader(self._receive_buffer)
 if event is None:
 if not self._receive_buffer and self._receive_buffer_closed:
 # In some unusual cases (basically just HTTP/1.0 bodies), EOF
 # triggers an actual protocol event; in that case, we want to
 # return that event, and then the state will change and we'll
 # get called again to generate the actual ConnectionClosed().
 if hasattr(self._reader, "read_eof"):
 event = self._reader.read_eof()
 else:
 event = ConnectionClosed()
 return event

[docs] def send(self, event):
 """Convert a high-level event into bytes that can be sent to the peer,
 while updating our internal state machine.

 Args:
 event: The :ref:`event <events>` to send.

 Returns:
 If ``type(event) is ConnectionClosed``, then returns
 ``None``. Otherwise, returns a :term:`bytes-like object`.

 Raises:
 ProtocolError:
 Sending this event at this time would violate our
 understanding of the HTTP/1.1 protocol.

 If this method raises any exception then it also sets
 :attr:`Connection.our_state` to :data:`ERROR` -- see
 :ref:`error-handling` for discussion.

 """
 data_list = self.send_with_data_passthrough(event)
 if data_list is None:
 return None
 else:
 return b"".join(data_list)

[docs] def send_with_data_passthrough(self, event):
 """Identical to :meth:`send`, except that in situations where
 :meth:`send` returns a single :term:`bytes-like object`, this instead
 returns a list of them -- and when sending a :class:`Data` event, this
 list is guaranteed to contain the exact object you passed in as
 :attr:`Data.data`. See :ref:`sendfile` for discussion.

 """
 if self.our_state is ERROR:
 raise ProtocolError("Can't send data when our state is ERROR")
 try:
 if type(event) is Response:
 self._clean_up_response_headers_for_sending(event)
 # We want to call _process_event before calling the writer,
 # because if someone tries to do something invalid then this will
 # give a sensible error message, while our writers all just assume
 # they will only receive valid events. But, _process_event might
 # change self._writer. So we have to do a little dance:
 writer = self._writer
 self._process_event(self.our_role, event)
 if type(event) is ConnectionClosed:
 return None
 else:
 # In any situation where writer is None, process_event should
 # have raised ProtocolError
 assert writer is not None
 data_list = []
 writer(event, data_list.append)
 return data_list
 except:
 self._process_error(self.our_role)
 raise

 # When sending a Response, we take responsibility for a few things:
 #
 # - Sometimes you MUST set Connection: close. We take care of those
 # times. (You can also set it yourself if you want, and if you do then
 # we'll respect that and close the connection at the right time. But you
 # don't have to worry about that unless you want to.)
 #
 # - The user has to set Content-Length if they want it. Otherwise, for
 # responses that have bodies (e.g. not HEAD), then we will automatically
 # select the right mechanism for streaming a body of unknown length,
 # which depends on depending on the peer's HTTP version.
 #
 # This function's *only* responsibility is making sure headers are set up
 # right -- everything downstream just looks at the headers. There are no
 # side channels. It mutates the response event in-place (but not the
 # response.headers list object).
 def _clean_up_response_headers_for_sending(self, response):
 assert type(response) is Response

 headers = list(response.headers)
 need_close = False

 framing_type, _ = _body_framing(self._request_method, response)
 if framing_type in ("chunked", "http/1.0"):
 # This response has a body of unknown length.
 # If our peer is HTTP/1.1, we use Transfer-Encoding: chunked
 # If our peer is HTTP/1.0, we use no framing headers, and close the
 # connection afterwards.
 #
 # Make sure to clear Content-Length (in principle user could have
 # set both and then we ignored Content-Length b/c
 # Transfer-Encoding overwrote it -- this would be naughty of them,
 # but the HTTP spec says that if our peer does this then we have
 # to fix it instead of erroring out, so we'll accord the user the
 # same respect).
 set_comma_header(headers, "Content-Length", [])
 if (self.their_http_version is None
 or self.their_http_version < b"1.1"):
 # Either we never got a valid request and are sending back an
 # error (their_http_version is None), so we assume the worst;
 # or else we did get a valid HTTP/1.0 request, so we know that
 # they don't understand chunked encoding.
 set_comma_header(headers, "Transfer-Encoding", [])
 # This is actually redundant ATM, since currently we
 # unconditionally disable keep-alive when talking to HTTP/1.0
 # peers. But let's be defensive just in case we add
 # Connection: keep-alive support later:
 need_close = True
 else:
 set_comma_header(headers, "Transfer-Encoding", ["chunked"])

 if not self._cstate.keep_alive or need_close:
 # Make sure Connection: close is set
 connection = set(get_comma_header(headers, "Connection"))
 connection.discard(b"keep-alive")
 connection.add(b"close")
 set_comma_header(headers, "Connection", sorted(connection))

 response.headers = headers

 © Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/down-pressed.png

_static/closelabel.png

search.html

 Navigation

 		
 index

 		
 modules |

 		h11 0.5.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

