h11 Documentation
Release 0.5.0

Nathaniel J. Smith

May 14, 2016

Contents

1 Contents 3
1.1 Getting started: Writing your own HTTP/I.1 client 3
1.2 APIdocumentation i i it e e e e 8
1.3 Details of our HTTP support for HTTPnerds 23
1.4 Historyof changes e 24
Python Module Index 25

h11 Documentation, Release 0.5.0

h11 is an HTTP/1.1 protocol library written in Python, heavily inspired by hyper-h2.

h11’s goal is to be a simple, robust, complete, and non-hacky implementation of the first “chapter” of the HTTP/1.1
spec: REC 7230: HTTP/1.1 Message Syntax and Routing. That is, it mostly focuses on implementing HTTP at the
level of taking bytes on and off the wire, and the headers related to that, and tries to be picky about spec conformance
when possible. It doesn’t know about higher-level concerns like URL routing, conditional GETs, cross-origin cookie
policies, or content negotiation. But it does know how to take care of framing, cross-version differences in keep-
alive handling, and the “obsolete line folding” rule, and to use bounded time and space to process even pathological /
malicious input, so that you can focus your energies on the hard / interesting parts for your application. And it tries to
support the full specification in the sense that any useful HTTP/1.1 conformant application should be able to use h11.

This is a “bring-your-own-I/O” protocol library; like h2, it contains no IO code whatsoever. This means you can hook
h11 up to your favorite network API, and that could be anything you want: synchronous, threaded, asynchronous, or
your own implementation of RFC 6214 — h11 won’t judge you. This is h11’s main feature compared to the current
state of the art, where every HTTP library is tightly bound to a particular network framework, and every time a new
network API comes along then someone has to start over reimplementing the entire HTTP stack from scratch. We
highly recommend Cory Benfield’s excellent blog post about the advantages of this approach.

This also means that h11 is not immediately useful out of the box: it’s a toolkit for building programs that speak HTTP,
not something that could directly replace requests or twisted.web or whatever. But h11 makes it much easier
to implement something like requests or twisted.web.

Vital statistics:
* Requirements: Python 2.7 or Python 3.3+, including PyPy
e Install: not yet
* Source: https://github.com/njsmith/h11
* Docs: https://h11.readthedocs.io
* License: MIT

* Code of conduct: Contributors are requested to follow our code of conduct in all project spaces.

Contents 1

https://hyper-h2.readthedocs.io/
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc6214
https://curio.readthedocs.io/
https://curio.readthedocs.io/
https://lukasa.co.uk/2015/10/The_New_Hyper/
https://github.com/njsmith/h11
https://h11.readthedocs.io
https://github.com/njsmith/h11/blob/master/CODE_OF_CONDUCT.md

h11 Documentation, Release 0.5.0

2 Contents

CHAPTER 1

Contents

1.1 Getting started: Writing your own HTTP/1.1 client

h11 can be used to implement both HTTP/1.1 clients and servers. To give a flavor for how the API works, we’ll
demonstrate a small client.

1.1.1 HTTP basics

An HTTP interaction always starts with a client sending a request, optionally some data (e.g., a POST body); and then
the server responds with a response and optionally some data (e.g. the requested document). Requests and responses
have some data associated with them: for requests, this is a method (e.g. GET), a target (e.g. /index.html), and a
collection of headers (e.g. User—agent: demo—-clent). For responses, it’s a status code (e.g. 404 Not Found)
and a collection of headers.

Of course, as far as the network is concerned, there’s no such thing as “requests” and “responses” — there’s just bytes
being sent from one computer to another. Let’s see what this looks like, by fetching https://httpbin.org/xml:

In [1]: import ssl, socket

In [2]: ctx = ssl.create_default_context ()

In [3]: sock = ctx.wrap_socket (socket.create_connection(("httpbin.org", 443)),
: server_hostname="httpbin.org")

Send request
In [4]: sock.sendall (b"GET /xml HTTP/1.1\r\nhost: httpbin.org\r\n\r\n")
Out[4]: 40

Read response
In [5]: response_data = sock.recv (1024)

Let's see what we got!
In [6]: print (response_data)
b'HTTP/1.1 200 OK\r\nServer: nginx\r\nDate: Sat, 14 May 2016 01:32:22 GMT\r\nContent-Tyq

So that’s, uh, very convenient and readable. It’s a little more understandable if we print the bytes as text:

In [7]: print (response_data.decode ("ascii"))
HTTP/1.1 200 OK
Server: nginx

e

applicati

https://httpbin.org/xml

h11 Documentation, Release 0.5.0

Date: Sat, 14 May 2016 01:32:22 GMT
Content-Type: application/xml
Content-Length: 522

Connection: keep-alive
Access—-Control-Allow-Origin: =
Access—-Control-Allow-Credentials: true

<?xml version='1.0' encoding='us-ascii'?>
<!-— A SAMPLE set of slides -——>

<slideshow
title="Sample Slide Show"
date="Date of publication"
author="Yours Truly"
>

<!-— TITLE SLIDE —-->
<slide type="all">

<title>Wake up to WonderWidgets!</title>
</slide>

<!-— OVERVIEW -->
<slide type="all">
<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>
</slide>

</slideshow>

Here we can see the status code at the top (200, which is the code for “OK”), followed by the headers, followed by
the data (a silly little XML document). But we can already see that working with bytes by hand like this is really
cumbersome. What we need to do is to move up to a higher level of abstraction.

This is what h11 does. Instead of talking in bytes, it lets you talk in high-level HTTP “events”. To see what this means,
let’s repeat the above exercise, but using h11. We start by making a TLS connection like before, but now we’ll also
import h11, and create a h11.Connection object:

In [8]: import ssl, socket

In [9]: import hll

In [10]: ctx = ssl.create_default_context ()

In [11]: sock = ctx.wrap_socket (socket.create_connection(("httpbin.org", 443)),

el server_hostname="httpbin.org")

In [12]: conn = hll.Connection(our_role=hl1.CLIENT)

Next, to send an event to the server, there are three steps we have to take. First, we create an object representing the
event we want to send — in this case, a h11.Request:

In [13]: request = hll.Request (method="GET",
R target="/xml",
et headers=[("Host", "httpbin.org")])

4 Chapter 1. Contents

h11 Documentation, Release 0.5.0

Next, we pass this to our connection’s send () method, which gives us back the bytes corresponding to this message:

In [14]: bytes_to_send = conn.send(request)

And then we send these bytes across the network:

In [15]: sock.sendall (bytes_to_send)
Out [15]: 40

There’s nothing magical here — these are the same bytes that we sent up above:

In [16]: bytes_to_send
Out[1l6]: b'GET /xml HTTP/1.l1\r\nhost: httpbin.org\r\n\r\n'

Why doesn’t h11 go ahead and send the bytes for you? Because it’s designed to be usable no matter what socket API
you’re using — doesn’t matter if it’s synchronous like this, asynchronous, callback-based, whatever; if you can read
and write bytes from the network, then you can use h11.

In this case, we’re not quite done yet — we have to send another event to tell the other side that we’re finished, which
we do by sending an EndOfMessage event:

In [17]: end_of_message_bytes_to_send = conn.send(hll.EndOfMessage())

In [18]: sock.sendall (end_of_message_bytes_to_send)

Out[18]: O

Of course, it turns out that in this case, the HTTP/1.1 specification tells us that any request that doesn’t contain either a
Content-Length or Transfer-Encoding header automatically has a 0 length body, and h11 knows that, and
h11 knows that the server knows that, so it actually encoded the EndOfMessage event as the empty string:

In [19]: end_of_message_bytes_to_send

Out[19]: b'"'

But there are other cases where it might not, depending on what headers are set, what message is being responded to,
the HTTP version of the remote peer, etc. etc. So for consistency, h11 requires that you always finish your messages
by sending an explicit EndOfMessage event; then it keeps track of the details of what that actually means in any
given situation, so that you don’t have to.

Finally, we have to read the server’s reply. By now you can probably guess how this is done: we read some bytes from
the network, then we hand them to Connection.receive data () and it gives us back high-level events from
the server.

In [20]: bytes_received = sock.recv(1024)
In [21]: events_received = conn.receive_data (bytes_received)

In [22]: events_received

Out [22]:
[Response (status_code=200, headers=[(b'server', b'nginx'), (b'date', b'Sat, 14 May 2016
Data (data=bytearray (b'<?xml version=\'1].0\' encoding=\'us—-ascii\'?>\n\n<!-- A SAMPLE g

EndOfMessage (headers=[1])]

Here the server sent us three events: a Response object, which is similar to the Request object that we created
earlier and has the response’s status code (200 OK) and headers; a Data object containing the response data; and
another EndOfMessage object. This similarity between what we send and what we receive isn’t accidental: if we
were using h11 to write an HTTP server, then these are the objects we would have created and passed to send () —
h11 in client and server mode has an API that’s almost exactly symmetric.

1.1. Getting started: Writing your own HTTP/1.1 client 5

01:32:22 GMT
et of slides

h11 Documentation, Release 0.5.0

1.1.2 A basic client object

To make this a little more convenient to play with, we can wrap up our socket and Connect ion into a single object
with some convenience methods:

import socket, ssl
import hll

class MyHttpClient:
def _ _init__ (self, host, port):

self.sock = socket.create_connection((host, port))
if port == 443:
self.sock = ssl.wrap_socket (self.sock)

self.conn = hll.Connection(our_role=hl1l.CLIENT)

def send(self, *events):
for event in events:
data = self.conn.send(event)
if data is None:
event was a ConnectionClosed(), meaning that we won't be
sending any more data:
self.sock.shutdown (socket.SHUT_WR)
else:
self.sock.sendall (data)

max_bytes set intentionally small for pedagogical purposes
def receive(self, max_bytes=200) :
return self.conn.receive_data(self.sock.recv(max_bytes))

And then we can send requests:

In [23]: client = MyHttpClient ("httpbin.org", 443)

In [24]: client.send(hll.Request (method="GET", target="/xml",
e headers=[("Host", "httpbin.org")1]1),
e hll.EndOfMessage())

And read back the events:

In [25]: client.receive()
Out [25]: []

What happened here? We only read a max of 200 bytes from the socket (see max_bytes= above), and it turns out
that this wasn’t enough to form a complete event. This happens all the time in real life, due to slow networks or
whatever — data trickles in at its own pace. When this happens, h11 buffers the unprocessed data internally, and if you
keep reading then eventually you’ll get a complete event:

In [26]: client.receive()

Out[26] :

[Response (status_code=200, headers=[(b'server', b'nginx'), (b'date', b'Sat, 14 May 2016
Data (data=bytearray (b'<?xml version=\'1].0\' encoding=\'us—-ascii\'?>\n\n<!-- A SAMPLE g

Note here that we received a Data event that only has part of the response body — hl1 streams out data as it ar-
rives, which might mean that you receive multiple Data events. (Of course, if you're the one sending data, you
can do the same thing: instead of buffering all your data in one giant Data event, you can send multiple Data
events yourself to stream the data out incrementally; just make sure that you set the appropriate Content-Length
/ Transfer—-Encoding headers.) If we keep reading, we’ll see more Data events, and then eventually the
EndOfMessage:

6 Chapter 1. Contents

01:32:23 GMT
et of slides

h11 Documentation, Release 0.5.0

In [27]: client.receive()
Out[27]: [Data (data=bytearray (b'\n\n <!-—= TITLE SLIDE -->\n <slide type="all">\n

In [28]: client.receive ()
R N N N R N R N N N N N N N R R R N N R N R N N N N N N N N N N N N N N N R R R RN
[Data (data=bytearray (b'm>Why WonderWidgets are great</item>\n <item/>\n
EndOfMessage (headers=[])]

Now we can see why EndOfMessage is so important — otherwise, we can’t tell when we’ve received the end of the
data. And since that’s the end of this response, the server won’t send us anything more until we make another request
—if we try, then the socket read will just hang forever, unless we set a timeout or interrupt it:

In [29]: client.sock.settimeout (2)

In [30]: client.receive ()

timeoutTraceback (most recent call last)
<ipython-input-30-4394c01d9eal> in <module> ()
————> 1 client.receive ()

<string> in receive(self, max_bytes)

/usr/lib/python3.4/ssl.py in recv(self, buflen, flags)

752 "non-zero flags not allowed in calls to recv() on %s" %
753 self._ _class_)
——> 754 return self.read(buflen)
755 else:
756 return socket.recv(self, buflen, flags)

/usr/lib/python3.4/ssl.py in read(self, len, buffer)

641 v = self._sslobj.read(len, buffer)
642 else:

——> 643 v = self._sslobj.read(len or 1024)
644 return v
645 except SSLError as x:

timeout: The read operation timed out

1.1.3 Keep-alive

For some servers, we’d have to stop here, because they require a new connection for every request/response. But, this
server is smarter than that — it supports keep-alive, so we can re-use this connection to send another request. There’s a
few ways we can tell. First, if it didn’t, then it would have closed the connection already, and we would have gotten
a ConnectionClosed event on our last call to receive (). We can also tell by checking h11’s internal idea of
what state the two sides of the conversation are in:

In [31]: client.conn.our_state, client.conn.their_state
Oout[31]: (DONE, DONE)

If the server didn’t support keep-alive, then these would be MUST_CLOSE and either MUST_CLOSE or CLOSED,
respectively (depending on whether we’d seen the socket actually close yet). DONE / DONE, on the other hand, means
that this request/response cycle has totally finished, but the connection itself is still viable, and we can start over and
send a new request on this same connection.

To do this, we tell h11 to get ready (this is needed as a safety measure to make sure different requests/responses on the
same connection don’t get accidentally mixed up):

1.1. Getting started: Writing your own HTTP/1.1 client 7

<title>W:

ALV

<item:

https://en.wikipedia.org/wiki/HTTP_persistent_connection

h11 Documentation, Release 0.5.0

In [32]: client.conn.prepare_to_reuse ()

This resets both sides back to their initial TDLE state, allowing us to send another Request:

In [33]: client.conn.our_state, client.conn.their_state
Out[33]: (IDLE, IDLE)

In [34]: client.send(hll.Request (method="GET", target="/get",
e headers=[("Host", "httpbin.org")l]),
e h1ll.EndOfMessage())

In [35]: client.receive (max_bytes=4096)

Out [35]:
[Response (status_code=200, headers=[(b'server', b'nginx'), (b'date', b'Sat, 14 May 2016
Data (data=bytearray (b'{\n "args": {}, \n "headers": {\n "Host": "httpbin.org"\n

EndOfMessage (headers=[1])]

1.1.4 What’s next?

Here’s some ideas of things you might try:

* Adapt the above examples to make a POST request. (Don’t forget to set the Content-Length header — but
don’t worry, if you do forget, then h11 will give you an error when you try to send data):

client.send(hll.Request (method="POST", target="/post",
headers=[("Host", "httpbin.org"),
("Content-Length", "10")1),
hll.Data(data=b"1234567890"),
hll.EndOfMessage())
client.receive (max_bytes=4096)

» Experiment with what happens if you try to violate the HTTP protocol by sending a Response as a client, or
sending two Requests in a row.

* Write your own basic http_get function that takes a URL, parses out the host/port/path, then connects to the
server, does a GET request, and then collects up all the resulting Dat a objects, concatenates their payloads, and
returns it.

* Adapt the above code to use your favorite non-blocking API
e Use hl1 to write a simple HTTP server. (If you get stuck, there’s an example in the test suite.)

And of course, you’ll want to read the API documentation for all the details.

1.2 APl documentation

8 Chapter 1. Contents

01:32:25 GMT

14

\n

"origii

https://github.com/njsmith/h11/blob/5b194715182e1c846277ca48f626d90ed047d61f/h11/tests/test_against_stdlib_http.py#L56-L82

h11 Documentation, Release 0.5.0

Contents

* API documentation
— Events
— The state machine
— The Connection object
— Error handling
— Message body framing: Content—Length and all that
— Re-using a connection: keep-alive and pipelining
— Flow control
— Closing connections
— Switching protocols
— Support for sendfile ()
— Identifying hll in requests and responses

h11 has a fairly small public API, with all public symbols available directly at the top level:

In [1]: import hll

In [2]: hll.<TAB>

h11.CLIENT h11.MUST_CLOSE
h11.CLOSED hll.Paused
hll.Connection h11.PRODUCT_ID
hll.ConnectionClosed hll.ProtocolError
hll.Data hll.Request
hl1l.DONE hll.Response
hll.EndOfMessage hll.SEND_BODY
hll.ERROR hll.SEND_RESPONSE
hll.IDLE hll.SERVER

hll.InformationalResponse hll.SWITCHED_PROTOCOL
h11.MIGHT_SWITCH_PROTOCOL

These symbols fall into three main categories: event classes, special constants used to track different connection states,
and the Connection class itself. We’ll describe them in that order.

1.2.1 Events

Events are the core of h11: the whole point of hl1 is to let you think about HTTP transactions as being a series of
events sent back and forth between a client and a server, instead of thinking in terms of bytes.

All events behave in essentially similar ways. Let’s take Request as an example. Like all events, this is a “final” class
— you cannot subclass it. And like all events, it has several fields. For Request, there are four of them: method,
target ', headers®, and http_version®'. http_version® defaults to b"1.1"; the rest have no default,
so to create a Request you have to specify their values:

In [3]: req = hll.Request (method="GET",
. target:"/",
headers=[("Host", "example.com")])

Event constructors accept only keyword arguments, not positional arguments.

Events have a useful repr:

In [4]: req
Out[4]: Request (method=b'GET', target=b'/', headers=[(b'host', b'example.com')], http_vsg

prsion=b'1.1"]

1.2. APl documentation 9

h11 Documentation, Release 0.5.0

And their fields are available as regular attributes:

In [5]: reg.method
Out [5]: DL'GET'

In [6]: reg.target
AN\ OutE [6]: b /!

In [7]: reqg.headers
AALUAALV VAN AN NN NN NN OutE [7] 2 [(b'host!', b'example.com')]

In [8]: reqg.http_version
AT DD DD LD VDD VNN NN N\ Out [8] 2 b1 1!

Notice that these attributes have been normalized to byte-strings. In general, events normalize and validate their fields
when they’re constructed. Some of these normalizations and checks are specific to a particular event — for example,
Request enforces RFC 7230’s requirement that HTTP/1.1 requests must always contain a "Host " header:

HTTP/1.0 requests don't require a Host: header
In [9]: hll.Request (method="GET", target="/", headers=[], http_version="1.0")
Out[9]: Request (method=b'GET', target=b'/', headers=[], http_version=b'1.0")

But HTTP/1.1 requests do
In [10]: hll.Request (method="GET", target="/", headers=[])

ProtocolErrorTraceback (most recent call last)
<ipython-input-10-645a3ef89ell> in <module> ()
—-——=> 1 hll.Request (method="GET", target="/", headers=[])

/home/docs/checkouts/readthedocs.org/user_builds/hll/envs/v0.5.0/1ib/python3.4/site-pac

54 raise ProtocolError ("status code must be integer")
55
-——> 56 self._validate()
57
58 def _validate (self):

/home/docs/checkouts/readthedocs.org/user_builds/hll/envs/v0.5.0/1ib/python3.4/site-pac

121 break
122 else:
-——> 123 raise ProtocolError ("Missing mandatory Host: header")
124
125

ProtocolError: Missing mandatory Host: header

tages/h11-0.5

tages/h11-0.5

This helps protect you from accidentally violating the protocol, and also helps protect you from remote peers who
attempt to violate the protocol.

A few of these normalization rules are standard across multiple events, so we document them here: headers: In
h11, headers are represented internally as a list of (name, value) pairs, where name and value are both byte-strings,
name is always lowercase, and name and value are both guaranteed not to have any leading or trailing whitespace.
When constructing an event, we accept any iterable of pairs like this, and will automatically convert native strings
containing ascii or bytes-like objects to byte-strings, convert names to lowercase, and strip whitespace from values:

In [11]: original_headers = [("HOST", bytearray(b" example.com "))]

In [12]: req hll.Request (method="GET", target="/", headers=original_headers)

In [13]: original_headers

10 Chapter 1. Contents

https://docs.python.org/3.5/glossary.html#term-bytes-like-object

h11 Documentation, Release 0.5.0

Out[13]: [('HOST', bytearray(b' example.com "))]

In [14]: reg.headers
ATV DUV VNN NN NN AN\ NN Out [14] ¢ [(b'host!', b'example.com')]

If any names are detected with leading or trailing whitespace, then this is an error (“in the past, differences in the
handling of such whitespace have led to security vulnerabilities” — RFC 7230). We also check for other protocol
violations, e.g. Content-Length: hello isan error. We may add additional checks in the future. It’s not just
headers we normalize to being byte-strings: the same type-conversion logic is also applied to the Request . met hod
and Request . target field, and — for consistency — all ht tp_version fields. In particular, we always represent
HTTP version numbers as byte-strings like b"1.1". Bytes-like objects and native strings will be automatically
converted to byte strings. Note that the HTTP standard specifically guarantees that all HTTP version numbers will
consist of exactly two digits separated by a dot, so comparisons like reg.http_version < b"1.1" aresafe and
valid.

When manually constructing an event, you generally shouldn’t specify http_version, because it defaults to
b"1.1", and if you attempt to override this to some other value then Connection. send () will reject your event
—hl11 only speaks HTTP/1.1. But it does understand other versions of HTTP, so you might receive events with other
http_version values from remote peers.

Here’s the complete set of events supported by h11:

class h11.Request (**kwargs)
The beginning of an HTTP request.

Fields:

method
An HTTP method, e.g. b"GET" or b"POST". Always a byte string. Bytes-like objects and native strings
containing only ascii characters will be automatically converted to byte strings.

target
The target of an HTTP request, e.g. b" /index.html", or one of the more exotic formats described in
RFC 7320, section 5.3. Always a byte string. Bytes-like objects and native strings containing only ascii
characters will be automatically converted to byte strings.

headers
Request headers, represented as a list of (name, value) pairs. See the header normalization rules for details.

http_version
The HTTP protocol version, represented as a byte string like b"1.1". See the HTTP version normaliza-
tion rules for details.

classhll.InformationalResponse (**kwargs)
An HTTP informational response.

Fields:

status_code
The status code of this response, as an integer. For an TnformationalResponse, this is always in the
range [100, 200).

headers
Request headers, represented as a list of (name, value) pairs. See the header normalization rules for details.

http_version
The HTTP protocol version, represented as a byte string like b"1.1". See the HTTP version normaliza-
tion rules for details.

class h11.Response (**kwargs)
The beginning of an HTTP response.

1.2. APl documentation 11

https://tools.ietf.org/html/rfc7230#section-3.2.4
https://docs.python.org/3.5/glossary.html#term-bytes-like-object
https://tools.ietf.org/html/rfc7230#section-2.6
https://docs.python.org/3.5/glossary.html#term-bytes-like-object
https://tools.ietf.org/html/rfc7230#section-5.3
https://docs.python.org/3.5/glossary.html#term-bytes-like-object

h11 Documentation, Release 0.5.0

Fields:

status_code
The status code of this response, as an integer. For an Response, this is always in the range [200, 600).

headers
Request headers, represented as a list of (name, value) pairs. See the header normalization rules for details.

http_version
The HTTP protocol version, represented as a byte string like b"1.1". See the HTTP version normaliza-
tion rules for details.

class h11.Data (**kwargs)
Part of an HTTP message body.

Fields:

class h11.EndOfMessage (**kwargs)
The end of an HTTP message.

Fields:

class h11.ConnectionClosed (**kwargs)
This event indicates that the sender has closed their outgoing connection.

Note that this does not necessarily mean that they can’t receive further data, because TCP connections are
composed to two one-way channels which can be closed independently. See Closing connections for details.

No fields.

class hll.Paused (**kwargs)
A pseudo-event used for flow control.

If Connection.receive_data () returns this event, it means that the HTTP parser is in a paused condi-
tion, and won’t process any new data until after the condition is resolved. See Flow control for details.

reason
The remote peer’s state that triggered the pause. One of:

*h11.DONE: aclient has started sending another request before we finished responding to their first re-
quest. Cleared by finishing the response and then calling Connection.prepare_to_reuse ().

*MIGHT SWITCH_PROTOCOL: aclientisinthe MIGHT SWITCH_PROTOCOL state, and is waiting
for the server to either accept or reject the proposed protocol switch. See Switching protocols for
details.

*SWITCHED_ _PROTOCOL: the remote peer is the SWITCHED PROTOCOL state. hl1 isn’t going to
parse any more data that they send, because they’re no longer speaking HTTP. See Switching protocols
for details.

1.2.2 The state machine

Now that you know what the different events are, the next question is: what can you do with them?
A basic HTTP request/response cycle looks like this:
* The client sends:
— one Request event with request metadata and headers,
— zero or more Data events with the request body (if any),

— and an EndOfMessage event.

12 Chapter 1. Contents

h11 Documentation, Release 0.5.0

* And then the server replies with:

zero or more TnformationalResponse events,

one Response event,

zero or more Data events with the response body (if any),

and a EndOfMessage event.

And once that’s finished, both sides either close the connection, or they go back to the top and re-use it for another
request/response cycle.

To coordinate this interaction, the hl1 Connection object maintains several state machines: one that tracks what
the client is doing, one that tracks what the server is doing, and a few more tiny ones to track whether keep-alive is
enabled and whether the client has proposed to switch protocols. h11 always keeps track of all of these state machines,
regardless of whether it’s currently playing the client or server role.

The state machines look like this (click on each to expand):

]

If you squint at the first two diagrams, you can see the client’s IDLE -> SEND_BODY -> DONE path and the server’s
IDLE -> SEND_RESPONSE -> SEND_BODY -> DONE path, which encode the basic sequence of events we de-
scribed above. But there’s a fair amount of other stuff going on here as well.

The first thing you should notice is the different colors. These correspond to the different ways that our state machines
can change state.

* Dark blue arcs are event-triggered transitions: if we’re in state A, and this event happens, when we switch
to state B. For the client machines, these transitions always happen when the client sends an event. For the
server machine, most of them involve the server sending an event, except that the server also goes from IDLE
-> SEND_RESPONSE when the client sends a Request.

* Green arcs are state-triggered transitions: these are somewhat unusual, and are used to couple together the
different state machines — if, at any moment, one machine is in state A and another machine is in state B, then
the first machine immediately transitions to state C. For example, if the CLIENT machine is in state DONE, and
the SERVER machine is in the CLOSED state, then the CLIENT machine transitions to MUST_CLOSE. And
the same thing happens if the CLIENT machine is in the state DONE and the keep-alive machine is in the state
disabled.

* There are also two purple arcs labeled prepare_to_send (): these correspond to an explicit method call
documented below.

Here’s why we have all the stuff in those diagrams above, beyond what’s needed to handle the basic request/response
cycle:

Server sending a Response directly from IDLE: This is used for error responses, when the client’s request
never arrived (e.g. 408 Request Timed Out) or was unparseable gibberish (400 Bad Request) and thus didn’t
register with our state machine as a real Request.

The transitions involving MUST CLOSE and CLOSE: keep-alive and shutdown handling; see Re-using a con-
nection: keep-alive and pipelining and Closing connections.

The transitions involving MIGHT SWITCH _PROTOCOL and SWITCHED_PROTOCOL: See Switching proto-
cols.

That weird ERROR state hanging out all lonely on the bottom: to avoid cluttering the diagram, we don’t draw
any arcs coming into this node, but that doesn’t mean it can’t be entered. In fact, it can be entered from any
state: if any exception occurs while trying to send/receive data, then the corresponding machine will transition
directly to this state. Once there, though, it can never leave — that part of the diagram is accurate. See Error
handling.

1.2. APl documentation 13

h11 Documentation, Release 0.5.0

And finally, note that in these diagrams, all the labels that are in italics are informal English descriptions of things that
happen in the code, while the labels in upright text correspond to actual objects in the public API. You’ve already seen
the event objects like Request and Response; there are also a set of opaque sentinel values that you can use to
track and query the client and server’s states:

h1ll.IDLE
h1l1l.SEND_RESPONSE
h1ll.SEND_BODY

h1ll.DONE

h11l.MUST_CLOSE

h1ll.CLOSED

h11l.MIGHT SWITCH_PROTOCOL
h1ll.SWITCHED_PROTOCOL
h1l1l.ERROR

For example, we can see that initially the client and server start in state TDLE / IDLE:

In [15]: conn = hll.Connection(our_role=hl11.CLIENT)

In [16]: conn.states
Out[16]: {SERVER: IDLE, CLIENT: IDLE}

And then if the client sends a Request, then the client switches to state SEND_BODY, while the server switches to
state SEND _RESPONSE:

In [17]: conn.send(hll.Request (method="GET", target="/", headers=[("Host", "example.com'

In [18]: conn.states
Out [18]: {SERVER: SEND_RESPONSE, CLIENT: SEND_BODY}

And we can test these values directly using constants like SEND_BODY:

In [19]: conn.states[hll.CLIENT] is hll.SEND_BODY
Out [19]: True

This shows how the Connect ion type tracks these state machines and lets you query their current state.

1.2.3 The Connection object

There are two special constants used to indicate the two different roles that a peer can play in an HTTP connection:
h11l.CLIENT
hll.SERVER

When creating a Connection object, you need to pass one of these constants to indicate which side of the HTTP
conversation you want to implement:

class h11.Connection (our_role, max_buffer_size=16384)
An object encapsulating the state of an HTTP connection.

Parameters

* our_role - If you're implementing a client, pass h11.CLIENT. If you’re implementing
a server, pass h11.SERVER.

14 Chapter 1. Contents

h11 Documentation, Release 0.5.0

* max_buffer_ size (int)-The maximum number of bytes of received but unprocessed
data we’re willing to buffer. In practice this mostly sets a limit on the maximum size of
the request/response line + headers. If this is exceeded, then receive data () will raise
ProtocolError.

receive_ data (data)
Convert bytes received from the remote peer into high-level events, while updating our internal state ma-
chine.

Parameters data (bytes-like object, or None) — The new data that was just recieved.

Normally, data is a bytes-like object containing new data received from the peer. We append
this to our internal receive buffer, and then check whether any new events can be parsed from
it. We always parse and return as many events as possible.

There are two important special cases:

Special case 1: If data is an empty byte-string like b" ", then this indicates that the re-
mote side has closed the connection (end of file). Normally this is convenient, because
standard Python APIs like file.read () or socket.recv () use b"" to indicate
end-of-file, while other failures to read are indicated using other mechanisms like raising
TimeoutError. When using such an API you can just blindly pass through whatever you
get from read to receive_data (), and everything will work.

But, if you have an API where reading an empty string is a valid non-EOF condition, then
you need to be aware of this and make sure to check for such strings and avoid passing them
to receive_data ().

Special case 2: If data is None, then we don’t add any data to the internal receive buffer,
but we attempt to parse it again to see if we can pull any new events out.

receive_data () normally pulls out all possible events immediately, so this is only useful
after calling prepare_to_reuse () —see Re-using a connection: keep-alive and pipelin-
ing for details.

Returns A list of event objects.
Raises ProtocolError

The peer has misbehaved. You should close the connection (possibly after sending some kind
of 400 response).

For robustness you might want to be prepared to catch other exceptions as well, but if this happens then
please do file a bug report as well — the intention is that ProtocolError is the only exception that this
method should be able to raise.

If this method raises any exception then it also sets Connection.their_stateto ERROR-—see Error
handling for discussion.

send (event)
Convert a high-level event into bytes that can be sent to the peer, while updating our internal state machine.

Parameters event — The event to send.

Returns If type (event) is ConnectionClosed, then returns None. Otherwise, re-
turns a bytes-like object.

Raises ProtocolError
Sending this event at this time would violate our understanding of the HTTP/1.1 protocol.

If this method raises any exception then it also sets Connection.our._state to ERROR — see Error
handling for discussion.

1.2. APl documentation 15

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/glossary.html#term-bytes-like-object
https://docs.python.org/3.5/glossary.html#term-bytes-like-object
https://docs.python.org/3.5/library/exceptions.html#TimeoutError
https://docs.python.org/3.5/glossary.html#term-bytes-like-object

h11 Documentation, Release 0.5.0

send_with_data_passthrough (event)
Identical to send (), except that in situations where send () returns a single bytes-like object, this instead
returns a list of them — and when sending a Dat a event, this list is guaranteed to contain the exact object
you passed in as Data.data. See Support for sendfile() for discussion.

prepare_to_reuse ()
Attempt to reset our connection state for a new request/response cycle.

If both client and server are in DONE state, then resets them both to TDLE state in preparation for a new
request/response cycle on this same connection. Otherwise, raises a ProtocolError.

See Re-using a connection: keep-alive and pipelining.

our_role
CLIENT if this is a client; SERVER if this is a server.

their role
SERVER if this is a client; CLTENT if this is a server.

states
A dictionary like:

{CLIENT: <client state>, SERVER: <server state>}

See The state machine for details.

our_state
The current state of whichever role we are playing. See The state machine for details.

their_state
The current state of whichever role we are NOT playing. See The state machine for details.

their http_version
The version of HTTP that our peer claims to support. None if we haven’t yet received a request/response.

This is preserved by prepare to_reuse (), so it can be handy for a client making multiple requests
on the same connection: normally you don’t know what version of HTTP the server supports until after
you do a request and get a response — so on an initial request you might have to assume the worst. But on
later requests on the same connection, the information will be available here.

client_is_waiting_for_100_continue
True if the client sent a request with the Expect: 100-continue header, and is still waiting for a
response (i.e., the server has not sent a 100 Continue or any other kind of response, and the client has not
gone ahead and started sending the body anyway).

See RFC 7231 section 5.1.1 for details.

they_are_waiting for 100_continue
True if their roleis CLIENT and client_1is waiting for 100_continue.

trailing_data
Data that has been received, but not yet processed, represented as a tuple with two elements, where the first
is a byte-string containing the unprocessed data itself, and the second is a bool that is True if the receive
connection was closed.

See Switching protocols for discussion of why you’d want this.

1.2.4 Error handling

Given the vagaries of networks and the folks on the other side of them, it’s extremely important to be prepared for
errors.

16 Chapter 1. Contents

https://docs.python.org/3.5/glossary.html#term-bytes-like-object
https://tools.ietf.org/html/rfc7231#section-5.1.1

h11 Documentation, Release 0.5.0

Most errors in h11 are signaled by raising ProtocolError:

exception h11.ProtocolError (msg, error_status_hint=400)
This exception indicates a violation of the HTTP/1.1 protocol.

This might be because your perr tried to do something that HTTP/1.1 says is illegal (if it’s raised by
Connection.receive_data ()), or that you did. Either way, you should probably close the connection
and think things over.

In addition to the normal Exception features, it has one attribute:

error_status_hint
If you’re a server and you want to send an error response back to a naughty client, then this gives a
suggestion as to which status code you might want to use. The default is 400 Bad Request, a generic
catch-all for protocol violations.

There are four cases where this exception might be raised:

* When trying to instantiate an event object: This indicates that something about your event is invalid. Your event
wasn’t constructed, but there are no other consequences — feel free to try again.

e When calling Connection.prepare_to_reuse (): This indicates that the connection is not ready to be
re-used, because one or both of the peers are not in the DONE state. The Connect ion object remains usable,
and you can try again later.

e When calling Connection.receive_data (): This indicates that the remote peer has violated our pro-
tocol assumptions. This is unrecoverable — we don’t know what they’re doing and we cannot safely proceed.
Connection.their state immediately becomes ERROR, and all further calls to receive data ()
will also raise ProtocolError. Connection.send () still works as normal, so if you’re implementing a
server and this happens then you have an opportunity to send back a 400 Bad Request response. Your only other
real option is to close your socket and make a new connection.

* When calling Connection. send (): This indicates that you violated our protocol assumptions. This is also
unrecoverable —h11 doesn’t know what you’re doing, its internal state may be inconsistent, and we cannot safely
proceed. Connection.our_state immediately becomes ERROR, and all further calls to send () will also
raise ProtocolError. The only thing you can reasonably due at this point is to close your socket and make
a new connection.

1.2.5 Message body framing: Content-Length and all that

There are two different headers that HTTP/1.1 uses to indicate a framing mechanism for request/response bodies:
Content-Length and Transfer-Encoding. Our general philosophy is that the way you tell h11 what config-
uration you want to use is by setting the appropriate headers in your request / response, and then h11 will both pass
those headers on to the peer and encode the body appropriately.

Currently, the only supported Transfer-Encoding is chunked.
On requests, this means:
* No Content-Length or Transfer-Encoding: no body, equivalent to Content-Length: 0.

e Content-Length: ...: You're going to send exactly the specified number of bytes. h11 will keep track
and signal an error if your EndOfMessage doesn’t happen at the right place.

e Transfer-Encoding: chunked: You're going to send a variable / not yet known number of bytes.

Note 1: only HTTP/1.1 servers are required to supported Transfer-Encoding: chunked, and as a
client you have to either send this header or not before you get to see what protocol version the server is using.

1.2. APl documentation 17

h11 Documentation, Release 0.5.0

Note 2: even though HTTP/1.1 servers are required to support Transfer—-Encoding: chunked, this
doesn’t mean that they actually do — e.g., applications using Python’s standard WSGI API cannot accept chunked
requests.

Nonetheless, this is the only way to send request where you don’t know the size of the body ahead of time, so
you might as well go ahead and hope.

On responses, things are a bit more subtle. There are effectively two cases:

* Content-Length: ...: You're going to send exactly the specified number of bytes. h11 will keep track
and signal an error if your EndOfMessage doesn’t happen at the right place.

e Transfer—-Encoding: chunked, or, neither framing header is provided: These two cases are handled
differently at the wire level, but as far as the application is concerned they provide (almost) exactly the same
semantics: in either case, you’ll send a variable / not yet known number of bytes. The difference between them is
that Transfer-Encoding: chunked works better (compatible with keep-alive, allows trailing headers,
clearly distinguishes between successful completion and network errors), but requires an HTTP/1.1 client; for
HTTP/1.0 clients the only option is the no-headers close-socket-to-indicate-completion approach.

Since this is (almost) entirely a wire-level-encoding concern, h11 abstracts it: when sending a response you can
set either Transfer-Encoding: chunked or leave off both framing headers, and h11 will treat both
cases identically: it will automatically pick the best option given the client’s advertised HTTP protocol level.

You need to watch out for this if you’re using trailing headers (i.e., a non-empty headers at-
tribute on EndOfMessage), since trailing headers are only legal if we actually ended up us-
ing Transfer-Encoding: chunked. Trying to send a non-empty set of trailing headers to
a HTTP/1.0 client will raise a ProtocolError. If this use case is important to you, check
Connection.their http version to confirm that the client speaks HTTP/1.1 before you attempt to
send any trailing headers.

1.2.6 Re-using a connection: keep-alive and pipelining

HTTP/1.1 allows a connection to be re-used for multiple request/response cycles (also known as “keep-alive”). This
can make things faster by letting us skip the costly connection setup, but it does create some complexities: we have to
keep track of whether a connection is reusable, and when there are multiple requests and responses flowing through
the same connection we need to be careful not to get confused about which request goes with which response.

h11 considers a connection to be reusable if, and only if, both sides (a) speak HTTP/1.1 (HTTP/1.0 did have some
complex and fragile support for keep-alive bolted on, but h11 currently doesn’t support that — possibly this will be
added in the future), and (b) neither side has explicitly disabled keep-alive by sending a Connection: close
header.

If you plan to make only a single request or response and then close the connection, you should manually set the
Connection: close header in your request/response. hl1 will notice and update its state appropriately.

There are also some situations where you are required to send a Connection: close header, e.g. if you are
a server talking to a client that doesn’t support keep-alive. You don’t need to worry about these cases — h11 will
automatically add this header when necessary. Just worry about setting it when it’s actually something that you’re
actively choosing.

If you want to re-use a connection, you have to wait until both the request and the response have been com-
pleted, bringing both the client and server to the DONE state. Once this has happened, you can explicitly call
Connection.prepare_to_reuse () toreset both sides back to the TDLE state. This makes sure that the client
and server remain synched up.

If keep-alive is disabled for whatever reason — explicit headers, lack of protocol support, one of the sides just uni-
laterally closed the connection — then the state machines will skip past the DONE state directly to the MUST _CLOSE
or CLOSED states. In this case, trying to call prepare_to_use () will raise an error, and the only thing you can
legally do is to close this connection and make a new one.

18 Chapter 1. Contents

h11 Documentation, Release 0.5.0

HTTP/1.1 also allows for a more aggressive form of connection re-use, in which a client sends multiple requests in
quick succession, and then waits for the responses to stream back in order (“pipelining”). This is generally considered
to have been a bad idea, because it makes things like error recovery very complicated.

As a client, h11 does not support pipelining. This is enforced by the structure of the state machine: after
sending one Request, you can’t send another until after calling prepare to_reuse (), and you can’t call
prepare_to_reuse () until the server has entered the DONE state, which requires reading the server’s full re-
sponse.

As a server, hll provides the minimal support for pipelining required to comply with the HTTP/1.1 standard:
if the client sends multiple pipelined requests, then we the first request until we reach the DONE state, and
then receive_data () will pause and refuse to parse any more events until the response is completed and
prepare_to_reuse () is called. See the next section for more details.

1.2.7 Flow control

h11 always does the absolute minimum of buffering that it can get away with: send () always returns the full data
to send immediately, and recieve_data () always greedily parses and returns as many events as possible from its
current buffer. So you can be sure that no data or events will suddenly appear and need processing, except when you
call these methods. And presumably you know when you want to send things. But there is one thing you still need to
know: you don’t want to read data from the remote peer if it can’t be processed (i.e., you want to apply backpressure
and avoid building arbitrarily large buffers), and you definitely don’t want to block waiting on data from the remote
peer at the same time that it’s blocked waiting for you, because that will cause a deadlock.

We assume that if you’re implementing a client then you’re clever enough not to sit around trying to read more data
from the server when there’s no response pending. But there are a few more subtle ways that reading in HTTP can go
wrong, and h11 provides two ways to help you avoid these situations.

First, it keeps track of the client’s ‘‘Expect: 100-continue * status <https://tools.ietf.org/html/rfc723 1#section-5.1.1>°_.
you can read the spec for details, but basically the way this works if that sometimes clients will send a Request
with an Expect: 100-continue header, and then they will stop there, before sending the body, until
they see some response from the server (or possibly some timeout occurs). The server’s response can be an
InformationalResponse with status 100 Continue, or anything really (e.g. a full Response with an error
code). The crucial thing as a server, though, is that you should never block trying to read a request body if the client is
blocked waiting for you to tell them to send the request body.

The simple way to avoid this is to make sure that before you block waiting to read data, always execute some code
like:

if conn.they_are_waiting_for_100_continue:
send(conn, hll.InformationalResponse (100, headers=[...]))
do_read(...)

The other mechanism h11 provides to help you manage read flow control is the Paused pseudo-event. Unlike other
events, the Paused event doesn’t contain information sent from the remote peer; if receive_data () returns one
of these, it means that receive data () has stopped processing its data buffer and isn’t going to process any more
until the remote peer’s state (Connection. their state) changes to something different.

There are three possible reasons to enter a paused state:

* The remote peer is in the DONE state, but sent more data, i.e., a client is attempting to pipeline requests. In the
DONE state, receive_data () can return ConnectionClosed events, but if any actual data is received
then it will pause, and stay that way until a successful call to prepare_to_reuse ().

* The remote client is in the MIGHT SWITCH_PROTOCOL state (see Switching protocols). This really shouldn’t
happen, because they don’t know yet whether the protocol switch will actually happen, but OTOH it certainly
isn’t correct for us to go ahead and parse the data they sent as if it were HTTP, when it might not be. So if this
happens, we pause.

1.2. APl documentation 19

https://tools.ietf.org/html/rfc7231#section-5.1.1

h11 Documentation, Release 0.5.0

* The remote peer is in the SWITCHED _PROTOCOL state (see Switching protocols). We certainly aren’t going to
try to parse their data — it’s not HTTP, or at least not HTTP directed at us. If this happens, we pause.

Once the connection has entered a paused state, then it’s safe to keep calling receive data () — it will just keep
returning new Paused events — but instead you should probably stop reading from the network; all you’re going to
accomplish is to shove more and more data into our internal buffers, where it’s just going to there using more and
more memory. (And we do not enforce the regular maximum buffer size limits when in a paused state — if we did
then you might go over the limit in a single call to receive data (), not because you or the remote peer did
anything wrong, but just because a fair amount of data all came in at the same time we entered the paused state.) And
simply reading more data will never trigger an unpause — for that something external has to happen, usually a call to
prepare_to_reuse().

And that’s the other tricky moment: when you come out of a paused state, you shouldn’t immediately read from the
network. Consider the situation where a client sends two pipelined requests, and then blocks waiting for the two
responses. It’s possible the two requests will arrive together, and be enqueued into our receive buffer together:

In [20]: conn = hll.Connection (our_role=hll.SERVER)

In [21]: conn.receive_data/(
R b"GET /1 HTTP/1.1\r\nHost: example.com\r\n\r\n"
e b"GET /1 HTTP/1.1\r\nHost: example.com\r\n\r\n"

Out[21]:

[Request (method=b'GET', target=b'/1l', headers=[(b'host', b'example.com')], http_versionsb'l.1'),

EndOfMessage (headers=[1),
Paused (reason=DONE)]

Notice how we get back only the first Request and its (empty) body, then a Paused event.

We process the first request:

In [22]: conn.send(hll.Response (status_code=200, headers=[]))
Out[22]: b'HTTP/1.1 200 \r\ntransfer-encoding: chunked\r\n\r\n'

In [23]: conn.send(hll.EndOfMessage ())
ATV LD LDV AN\ OuE [23] 0 b'ONr\n\r\n'

And then reset the connection to handle the next:

In [24]: conn.prepare_to_reuse ()

This has unpaused our receive buffer, so now we’re ready to read more data from the network right? Well, no— the
client is done sending data, we already have all their data, so if we block waiting for more data now, then we’ll be
waiting forever.

That would be bad.

Instead, what we have to do after unpausing is make an explicit call to receive data () with None as the argu-
ment, which means “I don’t have any more data for you, but could you check the data you already have buffered in
case there’s anything else you can parse now that you couldn’t before?”. And once we’ve done this and processed the
events we get back, we can continue as normal:

In [25]: conn.receive_data (None)

Out [25] :

[Request (method=b'GET', target=b'/1l', headers=[(b'host', b'example.com')], http_versions
EndOfMessage (headers=[1])]

to'1.1"),

Itis always safe to call conn. receive_data (None); if there aren’t any new events to return, it will simply return
[1, and if the connection is paused, it will return a Paused event. If you want to be conservative, you can defensively
call this immediately before issuing any blocking read.

20 Chapter 1. Contents

h11 Documentation, Release 0.5.0

1.2.8 Closing connections

h11 represents a connection shutdown with the special event type ConnectionClosed. You can send this event,
in which case send () will simply update the state machine and then return None. You can receive this event, if you
call conn.receive_data (b""). (The actual receipt might be delayed if the connection is paused.) It’s safe and
legal to call conn.receive_data (b"") multiple times, and once you’ve done this once, then all future calls to
receive_data () will also return ConnectionClosed():

In [26]: conn = hll.Connection(our_role=hl1l.CLIENT)

In [27]: conn.receive_data(b"")
Out [27]: [ConnectionClosed()]

In [28]: conn.receive_data(b"")
ANV LVLAL VNNV NN NN NN ANANNNNN\Out [28] ¢ [ConnectionClosed ()]

In [29]: conn.receive_data (None)

ATV LDV VDAV VAN A NN\ Out [29] @ [ConnectionClosed ()

(Or if you try to actually pass new data in after calling conn.receive_data (b""), that will raise an exception.)

h11 is careful about interpreting connection closure in a half-duplex fashion. TCP sockets pretend to be a two-
way connection, but really they’re two one-way connections. In particular, it’s possible for one party to shut down
their sending connection — which causes the other side to be notified that the connection has closed via the usual
socket.recv(...) —> b"" mechanism — while still being able to read from their receiving connection. (On
Unix, this is generally accomplished via the shutdown (2) system call.) So, for example, a client could send a
request, and then close their socket for writing to indicate that they won’t be sending any more requests, and then read
the response. It’s this kind of closure that is indicated by h11’s ConnectionClosed: it means that this party will
not be sending any more data — nothing more, nothing less. You can see this reflected in the state machine, in which
one party transitioning to CLOSED doesn’t immediately halt the connection, but merely prevents it from continuing
for another request/response cycle.

The state machine also indicates that ConnectionClosed events can only happen in certain states. This isn’t
true, of course — any party can close their connection at any time, and h11 can’t stop them. But what h11 can do is
distinguish between clean and unclean closes. For example, if both sides complete a request/response cycle and then
close the connection, that’s a clean closure and everyone will transition to the CLOSED state in an orderly fashion. On
the other hand, if one party suddenly closes the connection while they’re in the middle of sending a chunked response
body, or when they promised a Content-Length: of 1000 bytes but have only sent 500, then h11 knows that this
is a violation of the HTTP protocol, and will raise a ProtocolError. Basically hll treats an unexpected close the
same way it would treat unexpected, uninterpretable data arriving — it lets you know that something has gone wrong.

As a client, the proper way to perform a single request and then close the connection is:
1. Send a Request with Connection: close
2. Send the rest of the request body
3. Read the server’s Response and body
4

. conn.our_state is hll.MUST_CLOSE will now be true. Call
conn.send (ConnectionClosed()) and then close the socket. Or really you could just close the
socket — the thing calling send will do is raise an error if you’re not in MUST_CLOSE as expected. So it’s
between you and your conscience and your code reviewers.

(Technically it would also be legal to shutdown your socket for writing as step 2.5, but this doesn’t serve any purpose
and some buggy servers might get annoyed, so it’s not recommended.)

As a server, the proper way to perform a response is:

1. Send your Response and body

1.2. APl documentation 21

h11 Documentation, Release 0.5.0

2. Checkif conn.our_state is h1l1l.MUST_CLOSE. This might happen for a variety of reasons; for exam-
ple, if the response had unknown length and the client speaks only HTTP/1.0, then the client will not consider
the connection complete until we issue a close.

You should be particularly careful to take into consideration the following note fromx RFC 7230 section 6.6:

If a server performs an immediate close of a TCP connection, there is a significant risk that the client
will not be able to read the last HTTP response. If the server receives additional data from the client
on a fully closed connection, such as another request that was sent by the client before receiving the
server’s response, the server’s TCP stack will send a reset packet to the client; unfortunately, the reset
packet might erase the client’s unacknowledged input buffers before they can be read and interpreted by
the client’s HTTP parser.

To avoid the TCP reset problem, servers typically close a connection in stages. First, the server performs
a half-close by closing only the write side of the read/write connection. The server then continues to read
from the connection until it receives a corresponding close by the client, or until the server is reasonably
certain that its own TCP stack has received the client’s acknowledgement of the packet(s) containing the
server’s last response. Finally, the server fully closes the connection.

1.2.9 Switching protocols

h11 supports two kinds of “protocol switches”: requests with method CONNECT, and the newer Upgrade : header,
most commonly used for negotiating WebSocket connections. Both follow the same pattern: the client proposes that
they switch from regular HTTP to some other kind of interaction, and then the server either rejects the suggestion — in
which case we return to regular HTTP rules — or else accepts it. (For CONNECT, acceptance means a response with
2xx status code; for Upgrade :, acceptance means an TnformationalResponse withstatus 101 Switching
Protocols) If the proposal is accepted, then both sides switch to doing something else with their socket, and h11’s
job is done.

As a developer using h11, it’s your responsibility to send and interpret the actual CONNECT or Upgrade: request
and response, and to figure out what to do after the handover; it’s h11’s job to understand what’s going on, and help
you make the handover smoothly.

Specifically, what h11 does is pause parsing incoming data at the boundary between the two protocols, and then you
can retrieve any unprocessed data from the Connection.trailing data attribute.

1.2.10 Support for sendfile ()

Many networking APIs provide some efficient way to send particular data, e.g. asking the operating system to stream
files directly off of the disk and into a socket without passing through userspace.

It’s possible to use these APIs together with h11. The basic strategy is:

¢ Create some placeholder object representing the special data, that your networking code knows how to “send”
by invoking whatever the appropriate underlying APIs are.

* Make sure your placeholder object implements a ___len___ method returning its size in bytes.
e Call conn.send_with_data_passthrough (Data (data=<your placeholder object>))

* This returns a list whose contents are a mixture of (a) bytes-like objects, and (b) your placeholder object. You
should send them to the network in order.

Here’s a sketch of what this might look like:

class FilePlaceholder:
def _ init_ (self, file, offset, count):
self.file = file

22 Chapter 1. Contents

https://tools.ietf.org/html/rfc7230#section-6.6

h11 Documentation, Release 0.5.0

self.offset = offset
self.count = count

def len_ (self):
return self.count

def send_data (sock, data):
if isinstance(data, FilePlaceholder):
socket.sendfile added in Python 3.5
sock.sendfile (data.file, data.offset, data.count)
else:
sock.sendfile (data)

placeholder = FilePlaceholder (open("...", "rb"), 0, 200)
for data in conn.send_with_data_passthrough (Data (data=placeholder)) :
send_data (sock, data)

This works with all the different framing modes (Content-Length, Transfer—-Encoding: chunked, etc.)
—h11 will add any necessary framing data, update its internal state, and away you go.

1.2.11 Identifying h11 in requests and responses

According to RFC 7231, client requests are supposed to include a User—Agent : header identifying what software
they’re using, and servers are supposed to respond with a Server: header doing the same. hl1 doesn’t construct
these headers for you, but to make it easier for you to construct this header, it provides:

hl1l.PRODUCT_ID
A string suitable for identifying the current version of h11 in a User—Agent : or Server: header.

The version of h11 that was used to build these docs identified itself as:

In [30]: hll.PRODUCT_ID
out[30]: 'hl11/0.5.0'

1.3 Details of our HTTP support for HTTP nerds

h11 only speaks HTTP/1.1. It can talk to HTTP/1.0 clients and servers, but it itself only does HTTP/1.1.
We fully support HTTP/1.1 keep-alive.

We have a little bit of support for HTTP/1.1 pipelining — basically the minimum that’s required by the standard.
In server mode we can handle pipelined requests in a serial manner, responding completely to each request before
reading the next (and our API is designed to make it easy for servers to keep this straight). Client mode doesn’t
support pipelining at all. As far as I can tell, this matches the state of the art in all the major HTTP implementations:
the consensus seems to be that HTTP/1.1 pipelining was a nice try but unworkable in practice, and if you really need
pipelining to work then instead of trying to fix HTTP/1.1 you should switch to HTTP/2.0.

The HTTP/1.0 Connection: keep-alive pseudo-standard is currently not supported. (Note that this only
affects h11 as a server, because hl1 as a client always speaks HTTP/1.1.) Supporting this would be possible, but it’s
fragile and finicky and I’'m suspicious that if we leave it out then no-one will notice or care. HTTP/1.1 is now almost
old enough to vote in United States elections. I get that people sometimes write HTTP/1.0 clients because they don’t
want to deal with annoying stuff like chunked encoding, and I completely sympathize with that, but I'm guessing that
you’re not going to find too many people these days who care desperately about keep-alive and at the same time are
too lazy to implement Transfer-Encoding: chunked. Still, this would be my bet as to the missing feature that people
are most likely to eventually complain about...

1.3. Details of our HTTP support for HTTP nerds 23

h11 Documentation, Release 0.5.0

Of the headers defined in RFC 7230, the ones hl1 knows and has some special-case logic to care about are:
Connection:, Transfer—-Encoding:, Content-Length:, Host:, Upgrade:, and Expect: (which
is really from RFC 7231 but whatever). The other headers in RFC 7230 are TE:, Trailer:, and Via:; hll also
supports these in the sense that it ignores them and that’s really all it should be doing.

Transfer-Encoding support: we only know chunked, not gzip or deflate. We're in good company in this:
node.js at least doesn’t handle anything besides chunked either. So I'm not too worried about this being a problem
in practice. But I’'m not majorly opposed to adding support for more features here either.

A quirk in our Response encoding: we don’t bother including ascii status messages — instead of 200 OK we just
say 200. This is totally legal and no program should care, and it lets us skip carrying around a pointless table of status
message strings, but I suppose it might be worth fixing at some point.

When parsing chunked encoding, we parse but discard “chunk extensions”. This is an extremely obscure feature that
allows arbitrary metadata to be interleaved into a chunked transfer stream. This metadata has no standard uses, and
proxies are allowed to strip it out. I don’t think anyone will notice this lack, but it could be added if someone really
wants it; I just ran out of energy for implementing weirdo features no-one uses.

Currently we do implement support for “obsolete line folding” when reading HTTP headers. This is an optional part
of the spec — conforming HTTP/1.1 implementations MUST NOT send continuation lines, and conforming HTTP/1.1
servers MAY send 400 Bad Request responses back at clients who do send them (ref). I’'m tempted to remove this
support, since it adds some complicated and ugly code right at the center of the request/response parsing loop, and I'm
not sure whether anyone actually needs it. Unfortunately a few major implementations that I spot-checked (node.js,
go) do still seem to support reading such headers (but not generating them), so it might or might not be obsolete in
practice — it’s hard to know.

1.4 History of changes

1.4.1 v0.5.0

¢ Initial release.

24 Chapter 1. Contents

https://tools.ietf.org/html/rfc7231#section-5.1.1
https://tools.ietf.org/html/rfc7230#section-3.2.4

Python Module Index

h11,8

25

h11 Documentation, Release 0.5.0

26

Python Module Index

Index

C

CLIENT (in module h11), 14

client_is_waiting_for_100_continue (h11.Connection at-
tribute), 16

CLOSED (in module h11), 14

Connection (class in h11), 14

ConnectionClosed (class in h11), 12

D

Data (class in h11), 12
DONE (in module h11), 14

E

EndOfMessage (class in h11), 12
ERROR (in module h11), 14
error_status_hint (h11.ProtocolError attribute), 17

H

h11 (module), 8

headers (h11.InformationalResponse attribute), 11
headers (h11.Request attribute), 11

headers (h11.Response attribute), 12

http_version (h11.InformationalResponse attribute), 11
http_version (h11.Request attribute), 11

http_version (h11.Response attribute), 12

IDLE (in module h11), 14
InformationalResponse (class in h11), 11

M

method (h11.Request attribute), 11
MIGHT_SWITCH_PROTOCOL (in module h11), 14
MUST_CLOSE (in module h11), 14

O

our_role (h11.Connection attribute), 16
our_state (h11.Connection attribute), 16

P

Paused (class in h11), 12

prepare_to_reuse() (h11.Connection method), 16
PRODUCT_ID (in module h11), 23
ProtocolError, 17

R

reason (h11.Paused attribute), 12
receive_data() (h11.Connection method), 15
Request (class in h11), 11

Response (class in h11), 11

S

send() (h11.Connection method), 15

SEND_BODY (in module h11), 14

SEND_RESPONSE (in module h11), 14

send_with_data_passthrough() (h11.Connection method),
15

SERVER (in module h11), 14

states (h11.Connection attribute), 16

status_code (h11.InformationalResponse attribute), 11

status_code (h11.Response attribute), 12

SWITCHED_PROTOCOL (in module h11), 14

T

target (h11.Request attribute), 11

their_http_version (h11.Connection attribute), 16

their_role (h11.Connection attribute), 16

their_state (h11.Connection attribute), 16

they_are_waiting_for_100_continue (h11.Connection at-
tribute), 16

trailing_data (h11.Connection attribute), 16

27

	Contents
	Getting started: Writing your own HTTP/1.1 client
	API documentation
	Details of our HTTP support for HTTP nerds
	History of changes

	Python Module Index

