

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	h11 0.7.0 documentation

h11: A pure-Python HTTP/1.1 protocol library

h11 is an HTTP/1.1 protocol library written in Python, heavily inspired
by hyper-h2 [https://hyper-h2.readthedocs.io/].

h11’s goal is to be a simple, robust, complete, and non-hacky
implementation of the first “chapter” of the HTTP/1.1 spec: RFC 7230:
HTTP/1.1 Message Syntax and Routing [https://tools.ietf.org/html/rfc7230]. That is, it mostly focuses on
implementing HTTP at the level of taking bytes on and off the wire,
and the headers related to that, and tries to be picky about spec
conformance when possible. It doesn’t know about higher-level concerns
like URL routing, conditional GETs, cross-origin cookie policies, or
content negotiation. But it does know how to take care of framing,
cross-version differences in keep-alive handling, and the “obsolete
line folding” rule, and to use bounded time and space to process even
pathological / malicious input, so that you can focus your energies on
the hard / interesting parts for your application. And it tries to
support the full specification in the sense that any useful HTTP/1.1
conformant application should be able to use h11.

This is a “bring-your-own-I/O” protocol library; like h2, it contains
no I/O code whatsoever. This means you can hook h11 up to your
favorite network API, and that could be anything you want:
synchronous, threaded, asynchronous, or your own implementation of
RFC 6214 [https://tools.ietf.org/html/rfc6214] – h11 won’t judge
you. This is h11’s main feature compared to the current state of the
art, where every HTTP library is tightly bound to a particular network
framework, and every time a new network API [https://curio.readthedocs.io/] comes along then someone has to
start over reimplementing the entire HTTP stack from scratch. We
highly recommend Cory Benfield’s excellent blog post about the
advantages of this approach [https://lukasa.co.uk/2015/10/The_New_Hyper/].

This also means that h11 is not immediately useful out of the box:
it’s a toolkit for building programs that speak HTTP, not something
that could directly replace requests or twisted.web or
whatever. But h11 makes it much easier to implement something like
requests or twisted.web.

Vital statistics

	Requirements: Python 2.7 or Python 3.3+, including PyPy

	Install: pip install h11

	Sources and bug tracker: https://github.com/njsmith/h11

	Docs: https://h11.readthedocs.io

	License: MIT

	Code of conduct: Contributors are requested to follow our code of
conduct [https://github.com/njsmith/h11/blob/master/CODE_OF_CONDUCT.md] in
all project spaces.

Contents

	Getting started: Writing your own HTTP/1.1 client
	HTTP basics

	A basic client object

	Keep-alive

	What’s next?

	API documentation
	Events

	The state machine

	Special constants

	The Connection object

	Error handling

	Message body framing: Content-Length and all that

	Re-using a connection: keep-alive and pipelining

	Flow control

	Closing connections

	Switching protocols

	Support for sendfile()

	Identifying h11 in requests and responses

	Chunked Transfer Encoding Delimiters

	Examples
	Minimal client, using synchronous I/O

	Fairly complete server with error handling, using Curio for async I/O

	Details of our HTTP support for HTTP nerds
	Flow control details

	History of changes
	v0.7.0 (2016-11-25)

	v0.6.0 (2016-10-24)

	v0.5.0 (2016-05-14)

 Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	h11 0.7.0 documentation

Getting started: Writing your own HTTP/1.1 client

h11 can be used to implement both HTTP/1.1 clients and servers. To
give a flavor for how the API works, we’ll demonstrate a small
client.

HTTP basics

An HTTP interaction always starts with a client sending a request,
optionally some data (e.g., a POST body); and then the server
responds with a response and optionally some data (e.g. the
requested document). Requests and responses have some data associated
with them: for requests, this is a method (e.g. GET), a target
(e.g. /index.html), and a collection of headers
(e.g. User-agent: demo-clent). For responses, it’s a status code
(e.g. 404 Not Found) and a collection of headers.

Of course, as far as the network is concerned, there’s no such thing
as “requests” and “responses” – there’s just bytes being sent from
one computer to another. Let’s see what this looks like, by fetching
https://httpbin.org/xml:

In [1]: import ssl, socket

In [2]: ctx = ssl.create_default_context()

In [3]: sock = ctx.wrap_socket(socket.create_connection(("httpbin.org", 443)),
 ...: server_hostname="httpbin.org")
 ...:

Send request
In [4]: sock.sendall(b"GET /xml HTTP/1.1\r\nhost: httpbin.org\r\n\r\n")
Out[4]: 40

Read response
In [5]: response_data = sock.recv(1024)

Let's see what we got!
In [6]: print(response_data)
b'HTTP/1.1 200 OK\r\nServer: nginx\r\nDate: Sat, 26 Nov 2016 05:20:37 GMT\r\nContent-Type: application/xml\r\nContent-Length: 522\r\nConnection: keep-alive\r\nAccess-Control-Allow-Origin: *\r\nAccess-Control-Allow-Credentials: true\r\n\r\n<?xml version=\'1.0\' encoding=\'us-ascii\'?>\n\n<!-- A SAMPLE set of slides -->\n\n<slideshow \n title="Sample Slide Show"\n date="Date of publication"\n author="Yours Truly"\n >\n\n <!-- TITLE SLIDE -->\n <slide type="all">\n <title>Wake up to WonderWidgets!</title>\n </slide>\n\n <!-- OVERVIEW -->\n <slide type="all">\n <title>Overview</title>\n <item>Why WonderWidgets are great</item>\n <item/>\n <item>Who buys WonderWidgets</item>\n </slide>\n\n</slideshow>'

So that’s, uh, very convenient and readable. It’s a little more
understandable if we print the bytes as text:

In [7]: print(response_data.decode("ascii"))
HTTP/1.1 200 OK
Server: nginx
Date: Sat, 26 Nov 2016 05:20:37 GMT
Content-Type: application/xml
Content-Length: 522
Connection: keep-alive
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

<?xml version='1.0' encoding='us-ascii'?>

<!-- A SAMPLE set of slides -->

<slideshow
 title="Sample Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item/>
 <item>Who buys WonderWidgets</item>
 </slide>

</slideshow>

Here we can see the status code at the top (200, which is the code for
“OK”), followed by the headers, followed by the data (a silly little
XML document). But we can already see that working with bytes by hand
like this is really cumbersome. What we need to do is to move up to a
higher level of abstraction.

This is what h11 does. Instead of talking in bytes, it lets you talk
in high-level HTTP “events”. To see what this means, let’s repeat the
above exercise, but using h11. We start by making a TLS connection
like before, but now we’ll also import h11, and create a
h11.Connection object:

In [8]: import ssl, socket

In [9]: import h11

In [10]: ctx = ssl.create_default_context()

In [11]: sock = ctx.wrap_socket(socket.create_connection(("httpbin.org", 443)),
 : server_hostname="httpbin.org")
 :

In [12]: conn = h11.Connection(our_role=h11.CLIENT)

Next, to send an event to the server, there are three steps we have to
take. First, we create an object representing the event we want to
send – in this case, a h11.Request:

In [13]: request = h11.Request(method="GET",
 : target="/xml",
 : headers=[("Host", "httpbin.org")])
 :

Next, we pass this to our connection’s send()
method, which gives us back the bytes corresponding to this message:

In [14]: bytes_to_send = conn.send(request)

And then we send these bytes across the network:

In [15]: sock.sendall(bytes_to_send)
Out[15]: 40

There’s nothing magical here – these are the same bytes that we sent
up above:

In [16]: bytes_to_send
Out[16]: b'GET /xml HTTP/1.1\r\nhost: httpbin.org\r\n\r\n'

Why doesn’t h11 go ahead and send the bytes for you? Because it’s
designed to be usable no matter what socket API you’re using –
doesn’t matter if it’s synchronous like this, asynchronous,
callback-based, whatever; if you can read and write bytes from the
network, then you can use h11.

In this case, we’re not quite done yet – we have to send another
event to tell the other side that we’re finished, which we do by
sending an EndOfMessage event:

In [17]: end_of_message_bytes_to_send = conn.send(h11.EndOfMessage())

In [18]: sock.sendall(end_of_message_bytes_to_send)
Out[18]: 0

Of course, it turns out that in this case, the HTTP/1.1 specification
tells us that any request that doesn’t contain either a
Content-Length or Transfer-Encoding header automatically has a
0 length body, and h11 knows that, and h11 knows that the server knows
that, so it actually encoded the EndOfMessage event as the
empty string:

In [19]: end_of_message_bytes_to_send
Out[19]: b''

But there are other cases where it might not, depending on what
headers are set, what message is being responded to, the HTTP version
of the remote peer, etc. etc. So for consistency, h11 requires that
you always finish your messages by sending an explicit
EndOfMessage event; then it keeps track of the details of
what that actually means in any given situation, so that you don’t
have to.

Finally, we have to read the server’s reply. By now you can probably
guess how this is done, at least in the general outline: we read some
bytes from the network, then we hand them to the connection (using
Connection.receive_data()) and it converts them into events
(using Connection.next_event()).

In [20]: bytes_received = sock.recv(1024)

In [21]: conn.receive_data(bytes_received)

In [22]: conn.next_event()
Out[22]: Response(status_code=200, headers=[(b'server', b'nginx'), (b'date', b'Sat, 26 Nov 2016 05:20:37 GMT'), (b'content-type', b'application/xml'), (b'content-length', b'522'), (b'connection', b'keep-alive'), (b'access-control-allow-origin', b'*'), (b'access-control-allow-credentials', b'true')], http_version=b'1.1', reason=b'OK')

In [23]: conn.next_event()

 API documentation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	h11 0.7.0 documentation

API documentation

Contents

	API documentation
	Events

	The state machine

	Special constants

	The Connection object

	Error handling

	Message body framing: Content-Length and all that

	Re-using a connection: keep-alive and pipelining

	Flow control

	Closing connections

	Switching protocols

	Support for sendfile()

	Identifying h11 in requests and responses

	Chunked Transfer Encoding Delimiters

h11 has a fairly small public API, with all public symbols available
directly at the top level:

In [1]: import h11

In [2]: h11.<TAB>
h11.CLIENT h11.MUST_CLOSE
h11.CLOSED h11.NEED_DATA
h11.Connection h11.PAUSED
h11.ConnectionClosed h11.PRODUCT_ID
h11.Data h11.ProtocolError
h11.DONE h11.RemoteProtocolError
h11.EndOfMessage h11.Request
h11.ERROR h11.Response
h11.IDLE h11.SEND_BODY
h11.InformationalResponse h11.SEND_RESPONSE
h11.LocalProtocolError h11.SERVER
h11.MIGHT_SWITCH_PROTOCOL h11.SWITCHED_PROTOCOL

These symbols fall into three main categories: event classes, special
constants used to track different connection states, and the
Connection class itself. We’ll describe them in that order.

Events

Events are the core of h11: the whole point of h11 is to let you
think about HTTP transactions as being a series of events sent back
and forth between a client and a server, instead of thinking in terms
of bytes.

All events behave in essentially similar ways. Let’s take
Request as an example. Like all events, this is a “final”
class – you cannot subclass it. And like all events, it has several
fields. For Request, there are four of them:
method, target`,
headers`, and
http_version`. http_version`
defaults to b"1.1"; the rest have no default, so to create a
Request you have to specify their values:

In [3]: req = h11.Request(method="GET",
 ...: target="/",
 ...: headers=[("Host", "example.com")])
 ...:

Event constructors accept only keyword arguments, not positional arguments.

Events have a useful repr:

In [4]: req
Out[4]: Request(method=b'GET', target=b'/', headers=[(b'host', b'example.com')], http_version=b'1.1')

And their fields are available as regular attributes:

In [5]: req.method
Out[5]: b'GET'

In [6]: req.target

 Examples

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	h11 0.7.0 documentation

Examples

You can also find these in the examples/ directory of a source
checkout [https://github.com/njsmith/h11/tree/master/examples].

Minimal client, using synchronous I/O

import socket
import ssl
import h11

##
Setup
##

conn = h11.Connection(our_role=h11.CLIENT)
ctx = ssl.create_default_context()
sock = ctx.wrap_socket(socket.create_connection(("httpbin.org", 443)),
 server_hostname="httpbin.org")

##
Sending a request
##

def send(event):
 print("Sending event:")
 print(event)
 print()
 # Pass the event through h11's state machine and encoding machinery
 data = conn.send(event)
 # Send the resulting bytes on the wire
 sock.sendall(data)

send(h11.Request(method="GET",
 target="/get",
 headers=[("Host", "httpbin.org"),
 ("Connection", "close")]))
send(h11.EndOfMessage())

##
Receiving the response
##

def next_event():
 while True:
 # Check if an event is already available
 event = conn.next_event()
 if event is h11.NEED_DATA:
 # Nope, so fetch some data from the socket...
 data = sock.recv(2048)
 # ...and give it to h11 to convert back into events...
 conn.receive_data(data)
 # ...and then loop around to try again.
 continue
 return event

while True:
 event = next_event()
 print("Received event:")
 print(event)
 print()
 if type(event) is h11.EndOfMessage:
 break

##
Clean up
##

sock.close()

Fairly complete server with error handling, using Curio for async I/O

A simple HTTP server implemented using h11 and Curio:
http://curio.readthedocs.org/
(so requires python 3.5+).
#
All requests get echoed back a JSON document containing information about
the request.
#
This is a rather involved example, since it attempts to both be
fully-HTTP-compliant and also demonstrate error handling.
#
The main difference between an HTTP client and an HTTP server is that in a
client, if something goes wrong, you can just throw away that connection and
make a new one. In a server, you're expected to handle all kinds of garbage
input and internal errors and recover with grace and dignity. And that's
what this code does.
#
I recommend pushing on it to see how it works -- e.g. watch what happens if
you visit http://localhost:8080 in a webbrowser that supports keep-alive,
hit reload a few times, and then wait for the keep-alive to time out on the
server.
#
Or try using curl to start a chunked upload and then hit control-C in the
middle of the upload:
#
(for CHUNK in $(seq 10); do echo $CHUNK; sleep 1; done) \
| curl -T - http://localhost:8080/foo
#
(Note that curl will send Expect: 100-Continue, too.)
#
Or, heck, try letting curl complete successfully ;-).

Some potential improvements, if you wanted to try and extend this to a real
general-purpose HTTP server (and to give you some hints about the many
considerations that go into making a robust HTTP server):
#
- The timeout handling is rather crude -- we impose a flat 10 second timeout
on each request (starting from the end of the previous
response). Something finer-grained would be better. Also, if a timeout is
triggered we unconditionally send a 500 Internal Server Error; it would be
better to keep track of whether the timeout is the client's fault, and if
so send a 408 Request Timeout.
#
- The error handling policy here is somewhat crude as well. It handles a lot
of cases perfectly, but there are corner cases where the ideal behavior is
more debateable. For example, if a client starts uploading a large
request, uses 100-Continue, and we send an error response, then we'll shut
down the connection immediately (for well-behaved clients) or after
spending TIMEOUT seconds reading and discarding their upload (for
ill-behaved ones that go on and try to upload their request anyway). And
for clients that do this without 100-Continue, we'll send the error
response and then shut them down after TIMEOUT seconds. This might or
might not be your preferred policy, though -- maybe you want to shut such
clients down immediately (even if this risks their not seeing the
response), or maybe you're happy to let them continue sending all the data
and wasting your bandwidth if this is what it takes to guarantee that they
see your error response. Up to you, really.
#
- Another example of a debateable choice: if a response handler errors out
without having done *anything* -- hasn't started responding, hasn't read
the request body -- then this connection actually is salvagable, if the
server sends an error response + reads and discards the request body. This
code sends the error response, but it doesn't try to salvage the
connection by reading the request body, it just closes the
connection. This is quite possibly the best option, but again this is a
policy decision.
#
- Our error pages always include the exception text. In real life you might
want to log the exception but not send that information to the client.
#
- Our error responses perhaps should include Connection: close when we know
we're going to close this connection.
#
- We don't support the HEAD method, but ought to.
#
- We should probably do something cleverer with buffering responses and
TCP_CORK and suchlike.

import json
from itertools import count
from socket import SHUT_WR
from wsgiref.handlers import format_date_time

import curio
import h11

MAX_RECV = 2 ** 16
TIMEOUT = 10

##
I/O adapter: h11 <-> curio
##

The core of this could be factored out to be usable for curio-based clients
too, as well as servers. But as a simplified pedagogical example we don't
attempt this here.
class CurioHTTPWrapper:
 _next_id = count()

 def __init__(self, sock):
 self.sock = sock
 self.conn = h11.Connection(h11.SERVER)
 # Our Server: header
 self.ident = " ".join([
 "h11-example-curio-server/{}".format(h11.__version__),
 h11.PRODUCT_ID,
]).encode("ascii")
 # A unique id for this connection, to include in debugging output
 # (useful for understanding what's going on if there are multiple
 # simultaneous clients).
 self._obj_id = next(CurioHTTPWrapper._next_id)

 async def send(self, event):
 # The code below doesn't send ConnectionClosed, so we don't bother
 # handling it here either -- it would require that we do something
 # appropriate when 'data' is None.
 assert type(event) is not h11.ConnectionClosed
 data = self.conn.send(event)
 await self.sock.sendall(data)

 async def _read_from_peer(self):
 if self.conn.they_are_waiting_for_100_continue:
 self.info("Sending 100 Continue")
 go_ahead = h11.InformationalResponse(
 status_code=100,
 headers=self.basic_headers())
 await self.send(go_ahead)
 try:
 data = await self.sock.recv(MAX_RECV)
 except ConnectionError:
 # They've stopped listening. Not much we can do about it here.
 data = b""
 self.conn.receive_data(data)

 async def next_event(self):
 while True:
 event = self.conn.next_event()
 if event is h11.NEED_DATA:
 await self._read_from_peer()
 continue
 return event

 async def shutdown_and_clean_up(self):
 # When this method is called, it's because we definitely want to kill
 # this connection, either as a clean shutdown or because of some kind
 # of error or loss-of-sync bug, and we no longer care if that violates
 # the protocol or not. So we ignore the state of self.conn, and just
 # go ahead and do the shutdown on the socket directly. (If you're
 # implementing a client you might prefer to send ConnectionClosed()
 # and let it raise an exception if that violates the protocol.)
 #
 # Curio bug: doesn't expose shutdown()
 with self.sock.blocking() as real_sock:
 try:
 real_sock.shutdown(SHUT_WR)
 except OSError:
 # They're already gone, nothing to do
 return
 # Wait and read for a bit to give them a chance to see that we closed
 # things, but eventually give up and just close the socket.
 # XX FIXME: possibly we should set SO_LINGER to 0 here, so
 # that in the case where the client has ignored our shutdown and
 # declined to initiate the close themselves, we do a violent shutdown
 # (RST) and avoid the TIME_WAIT?
 # it looks like nginx never does this for keepalive timeouts, and only
 # does it for regular timeouts (slow clients I guess?) if explicitly
 # enabled ("Default: reset_timedout_connection off")
 async with curio.ignore_after(TIMEOUT):
 try:
 while True:
 # Attempt to read until EOF
 got = await self.sock.recv(MAX_RECV)
 if not got:
 break
 finally:
 await self.sock.close()

 def basic_headers(self):
 # HTTP requires these headers in all responses (client would do
 # something different here)
 return [
 ("Date", format_date_time(None).encode("ascii")),
 ("Server", self.ident),
]

 def info(self, *args):
 # Little debugging method
 print("{}:".format(self._obj_id), *args)

##
Server main loop
##

General theory:
#
If everything goes well:
- we'll get a Request
- our response handler will read the request body and send a full response
- that will either leave us in MUST_CLOSE (if the client doesn't
support keepalive) or DONE/DONE (if the client does).
#
But then there are many, many different ways that things can go wrong
here. For example:
- we don't actually get a Request, but rather a ConnectionClosed
- exception is raised from somewhere (naughty client, broken
response handler, whatever)
- depending on what went wrong and where, we might or might not be
able to send an error response, and the connection might or
might not be salvagable after that
- response handler doesn't fully read the request or doesn't send a
full response
#
But these all have one thing in common: they involve us leaving the
nice easy path up above. So we can just proceed on the assumption
that the nice easy thing is what's happening, and whenever something
goes wrong do our best to get back onto that path, and h11 will keep
track of how successful we were and raise new errors if things don't work
out.
async def http_serve(sock, addr):
 wrapper = CurioHTTPWrapper(sock)
 while True:
 assert wrapper.conn.states == {
 h11.CLIENT: h11.IDLE, h11.SERVER: h11.IDLE}

 try:
 async with curio.timeout_after(TIMEOUT):
 wrapper.info("Server main loop waiting for request")
 event = await wrapper.next_event()
 wrapper.info("Server main loop got event:", event)
 if type(event) is h11.Request:
 await send_echo_response(wrapper, event)
 except Exception as exc:
 wrapper.info("Error during response handler:", exc)
 await maybe_send_error_response(wrapper, exc)

 if wrapper.conn.our_state is h11.MUST_CLOSE:
 wrapper.info("connection is not reusable, so shutting down")
 await wrapper.shutdown_and_clean_up()
 return
 else:
 try:
 wrapper.info("trying to re-use connection")
 wrapper.conn.start_next_cycle()
 except h11.ProtocolError:
 states = wrapper.conn.states
 wrapper.info("unexpected state", states, "-- bailing out")
 await maybe_send_error_response(
 wrapper,
 RuntimeError("unexpected state {}".format(states)))
 await wrapper.shutdown_and_clean_up()
 return

##
Actual response handlers
##

Helper function
async def send_simple_response(wrapper, status_code, content_type, body):
 wrapper.info("Sending", status_code,
 "response with", len(body), "bytes")
 headers = wrapper.basic_headers()
 headers.append(("Content-Type", content_type))
 headers.append(("Content-Length", str(len(body))))
 res = h11.Response(status_code=status_code, headers=headers)
 await wrapper.send(res)
 await wrapper.send(h11.Data(data=body))
 await wrapper.send(h11.EndOfMessage())

async def maybe_send_error_response(wrapper, exc):
 # If we can't send an error, oh well, nothing to be done
 wrapper.info("trying to send error response...")
 if wrapper.conn.our_state not in {h11.IDLE, h11.SEND_RESPONSE}:
 wrapper.info("...but I can't, because our state is",
 wrapper.conn.our_state)
 return
 try:
 if isinstance(exc, h11.RemoteProtocolError):
 status_code = exc.error_status_hint
 else:
 status_code = 500
 body = str(exc).encode("utf-8")
 await send_simple_response(wrapper,
 status_code,
 "text/plain; charset=utf-8",
 body)
 except Exception as exc:
 wrapper.info("error while sending error response:", exc)

async def send_echo_response(wrapper, request):
 wrapper.info("Preparing echo response")
 if request.method not in {b"GET", b"POST"}:
 # Laziness: we should send a proper 405 Method Not Allowed with the
 # appropriate Accept: header, but we don't.
 raise RuntimeError("unsupported method")
 response_json = {
 "method": request.method.decode("ascii"),
 "target": request.target.decode("ascii"),
 "headers": [(name.decode("ascii"), value.decode("ascii"))
 for (name, value) in request.headers],
 "body": "",
 }
 while True:
 event = await wrapper.next_event()
 if type(event) is h11.EndOfMessage:
 break
 assert type(event) is h11.Data
 response_json["body"] += event.data.decode("ascii")
 response_body_unicode = json.dumps(response_json,
 sort_keys=True,
 indent=4,
 separators=(",", ": "))
 response_body_bytes = response_body_unicode.encode("utf-8")
 await send_simple_response(wrapper,
 200,
 "application/json; charset=utf-8",
 response_body_bytes)

##
Run the server
##

if __name__ == "__main__":
 kernel = curio.Kernel()
 print("Listening on http://localhost:8080")
 kernel.run(curio.tcp_server("localhost", 8080, http_serve))

 Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

 Details of our HTTP support for HTTP nerds

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	h11 0.7.0 documentation

Details of our HTTP support for HTTP nerds

h11 only speaks HTTP/1.1. It can talk to HTTP/1.0 clients and servers,
but it itself only does HTTP/1.1.

We fully support HTTP/1.1 keep-alive.

We have a little bit of support for HTTP/1.1 pipelining – basically
the minimum that’s required by the standard. In server mode we can
handle pipelined requests in a serial manner, responding completely to
each request before reading the next (and our API is designed to make
it easy for servers to keep this straight). Client mode doesn’t
support pipelining at all. As far as I can tell, this matches the
state of the art in all the major HTTP implementations: the consensus
seems to be that HTTP/1.1 pipelining was a nice try but unworkable in
practice, and if you really need pipelining to work then instead of
trying to fix HTTP/1.1 you should switch to HTTP/2.0.

The HTTP/1.0 Connection: keep-alive pseudo-standard is currently
not supported. (Note that this only affects h11 as a server, because
h11 as a client always speaks HTTP/1.1.) Supporting this would be
possible, but it’s fragile and finicky and I’m suspicious that if we
leave it out then no-one will notice or care. HTTP/1.1 is now almost
old enough to vote in United States elections. I get that people
sometimes write HTTP/1.0 clients because they don’t want to deal with
annoying stuff like chunked encoding, and I completely sympathize with
that, but I’m guessing that you’re not going to find too many people
these days who care desperately about keep-alive and at the same
time are too lazy to implement Transfer-Encoding: chunked. Still,
this would be my bet as to the missing feature that people are most
likely to eventually complain about...

Of the headers defined in RFC 7230, the ones h11 knows and has some
special-case logic to care about are: Connection:,
Transfer-Encoding:, Content-Length:, Host:, Upgrade:,
and Expect: (which is really from RFC 7231 [https://tools.ietf.org/html/rfc7231#section-5.1.1] but
whatever). The other headers in RFC 7230 are TE:, Trailer:,
and Via:; h11 also supports these in the sense that it ignores
them and that’s really all it should be doing.

Transfer-Encoding support: we only know chunked, not gzip or
deflate. We’re in good company in this: node.js at least doesn’t
handle anything besides chunked either. So I’m not too worried
about this being a problem in practice. But I’m not majorly opposed to
adding support for more features here either.

A quirk in our Response encoding: we don’t bother including
ascii status messages – instead of 200 OK we just say
200. This is totally legal and no program should care, and it lets
us skip carrying around a pointless table of status message strings,
but I suppose it might be worth fixing at some point.

When parsing chunked encoding, we parse but discard “chunk
extensions”. This is an extremely obscure feature that allows
arbitrary metadata to be interleaved into a chunked transfer
stream. This metadata has no standard uses, and proxies are allowed to
strip it out. I don’t think anyone will notice this lack, but it could
be added if someone really wants it; I just ran out of energy for
implementing weirdo features no-one uses.

Currently we do implement support for “obsolete line folding” when
reading HTTP headers. This is an optional part of the spec –
conforming HTTP/1.1 implementations MUST NOT send continuation lines,
and conforming HTTP/1.1 servers MAY send 400 Bad Request responses
back at clients who do send them (ref [https://tools.ietf.org/html/rfc7230#section-3.2.4]). I’m tempted to
remove this support, since it adds some complicated and ugly code
right at the center of the request/response parsing loop, and I’m not
sure whether anyone actually needs it. Unfortunately a few major
implementations that I spot-checked (node.js, go) do still seem to
support reading such headers (but not generating them), so it might or
might not be obsolete in practice – it’s hard to know.

Flow control details

The Flow control section in the main API docs gives a
user-level explanation of what they need to know about flow control
and the Connection.receive_data() “paused” state. The internal
implementation is slightly more involved.

First, pause handling is actually identical for both the client and
server

 Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

 History of changes

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	h11 0.7.0 documentation

History of changes

v0.7.0 (2016-11-25)

New features (backwards compatible):

	Made it so that sentinels are instances of themselves
<sentinel-type-trickiness>, to enable certain dispatch tricks on
the return value of Connection.next_event() (see issue #8 [https://github.com/njsmith/h11/issues/8] for discussion).

	Added Data.chunk_start and Data.chunk_end properties
to the Data event. These provide the user information
about where chunk delimiters are in the data stream from the remote
peer when chunked transfer encoding is in use. You probably
shouldn’t use these, but sometimes
there’s no alternative (see issue #19 [https://github.com/njsmith/h11/issues/19] for discussion).

	Expose Response.reason attribute, making it possible to read
or set the textual “reason phrase” on responses (issue #13 [https://github.com/njsmith/h11/pull/13]).

Bug fixes:

	Fix the error message given when a call to an event constructor is
missing a required keyword argument (issue #14 [https://github.com/njsmith/h11/issues/14]).

	Fixed encoding of empty Data events (Data(data=b""))
when using chunked encoding (issue #21 [https://github.com/njsmith/h11/issues/21]).

v0.6.0 (2016-10-24)

This is the first release since we started using h11 to write
non-trivial server code, and this experience triggered a number of
substantial API changes.

Backwards incompatible changes:

	Split the old receive_data() into the new
receive_data() and
next_event(), and replaced the old Paused
pseudo-event with the new NEED_DATA and PAUSED
sentinels.

	Simplified the API by replacing the old Connection.state_of(),
Connection.client_state, Connection.server_state with
the new Connection.states.

	Renamed the old prepare_to_reuse() to the new
start_next_cycle().

	Removed the Paused pseudo-event.

Backwards compatible changes:

	State machine: added a DONE -> MUST_CLOSE transition
triggered by our peer being in the ERROR state.

	Split ProtocolError into LocalProtocolError and
RemoteProtocolError (see Error handling). Use case: HTTP
servers want to be able to distinguish between an error that
originates locally (which produce a 500 status code) versus errors
caused by remote misbehavior (which produce a 4xx status code).

	Changed the PRODUCT_ID from h11/<verson> to
python-h11/<version>. (This is similar to what requests uses,
and much more searchable than plain h11.)

Other changes:

	Added a minimal benchmark suite, and used it to make a few small
optimizations (maybe ~20% speedup?).

v0.5.0 (2016-05-14)

	Initial release.

 Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	h11 0.7.0 documentation

 Python Module Index

 h

 			

 		
 h	

 	
 	
 h11	

 Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

 Index

 Navigation

 	
 index

 	
 modules |

 	h11 0.7.0 documentation

Index

 C
 | D
 | E
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T

C

 	

 	chunk_end (h11.Data attribute)

 	chunk_start (h11.Data attribute)

 	CLIENT (in module h11)

 	client_is_waiting_for_100_continue (h11.Connection attribute)

 	

 	CLOSED (in module h11)

 	Connection (class in h11)

 	ConnectionClosed (class in h11)

D

 	

 	Data (class in h11)

 	data (h11.Data attribute)

 	

 	DONE (in module h11)

E

 	

 	EndOfMessage (class in h11)

 	ERROR (in module h11)

 	

 	error_status_hint (h11.ProtocolError attribute)

H

 	

 	h11 (module)

 	headers (h11.EndOfMessage attribute)

 	

 	(h11.InformationalResponse attribute)

 	(h11.Request attribute)

 	(h11.Response attribute)

 	

 	http_version (h11.InformationalResponse attribute)

 	

 	(h11.Request attribute)

 	(h11.Response attribute)

I

 	

 	IDLE (in module h11)

 	

 	InformationalResponse (class in h11)

L

 	

 	LocalProtocolError

M

 	

 	method (h11.Request attribute)

 	MIGHT_SWITCH_PROTOCOL (in module h11)

 	

 	MUST_CLOSE (in module h11)

N

 	

 	NEED_DATA (in module h11)

 	

 	next_event() (h11.Connection method)

O

 	

 	our_role (h11.Connection attribute)

 	

 	our_state (h11.Connection attribute)

P

 	

 	PAUSED (in module h11)

 	PRODUCT_ID (in module h11)

 	

 	ProtocolError

R

 	

 	reason (h11.InformationalResponse attribute)

 	

 	(h11.Response attribute)

 	receive_data() (h11.Connection method)

 	RemoteProtocolError

 	

 	Request (class in h11)

 	Response (class in h11)

S

 	

 	send() (h11.Connection method)

 	SEND_BODY (in module h11)

 	SEND_RESPONSE (in module h11)

 	send_with_data_passthrough() (h11.Connection method)

 	SERVER (in module h11)

 	

 	start_next_cycle() (h11.Connection method)

 	states (h11.Connection attribute)

 	status_code (h11.InformationalResponse attribute)

 	

 	(h11.Response attribute)

 	SWITCHED_PROTOCOL (in module h11)

T

 	

 	target (h11.Request attribute)

 	their_http_version (h11.Connection attribute)

 	their_role (h11.Connection attribute)

 	

 	their_state (h11.Connection attribute)

 	they_are_waiting_for_100_continue (h11.Connection attribute)

 	trailing_data (h11.Connection attribute)

 Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		h11 0.7.0 documentation »

 All modules for which code is available

		h11._connection

		h11._events

		h11._util

 © Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_modules/h11/_events.html

 Navigation

 		
 index

 		
 modules |

 		h11 0.7.0 documentation »

 		Module code »

 Source code for h11._events

High level events that make up HTTP/1.1 conversations. Loosely inspired by
the corresponding events in hyper-h2:
#
http://python-hyper.org/h2/en/stable/api.html#events
#
Don't subclass these. Stuff will break.

from . import _headers
from ._util import bytesify, LocalProtocolError

Everything in __all__ gets re-exported as part of the h11 public API.
__all__ = [
 "Request",
 "InformationalResponse",
 "Response",
 "Data",
 "EndOfMessage",
 "ConnectionClosed",
]

class _EventBundle(object):
 _fields = []
 _defaults = {}

 def __init__(self, **kwargs):
 allowed = set(self._fields)
 for kwarg in kwargs:
 if kwarg not in allowed:
 raise TypeError(
 "unrecognized kwarg {} for {}"
 .format(kwarg, self.__class__.__name__))
 required = allowed.difference(self._defaults)
 for field in required:
 if field not in kwargs:
 raise TypeError(
 "missing required kwarg {} for {}"
 .format(field, self.__class__.__name__))
 self.__dict__.update(self._defaults)
 self.__dict__.update(kwargs)

 # Special handling for some fields

 if "headers" in self.__dict__:
 self.headers = _headers.normalize_and_validate(self.headers)

 for field in ["method", "target", "http_version", "reason"]:
 if field in self.__dict__:
 self.__dict__[field] = bytesify(self.__dict__[field])

 if "status_code" in self.__dict__:
 if not isinstance(self.status_code, int):
 raise LocalProtocolError("status code must be integer")

 self._validate()

 def _validate(self):
 pass

 def __repr__(self):
 name = self.__class__.__name__
 kwarg_strs = ["{}={}".format(field, self.__dict__[field])
 for field in self._fields]
 kwarg_str = ", ".join(kwarg_strs)
 return "{}({})".format(name, kwarg_str)

 # Useful for tests
 def __eq__(self, other):
 return (self.__class__ == other.__class__
 and self.__dict__ == other.__dict__)

 def __ne__(self, other):
 return not self.__eq__(other)

 # This is an unhashable type.
 __hash__ = None

[docs]class Request(_EventBundle):
 """The beginning of an HTTP request.

 Fields:

 .. attribute:: method

 An HTTP method, e.g. ``b"GET"`` or ``b"POST"``. Always a byte
 string. :term:`Bytes-like objects <bytes-like object>` and native
 strings containing only ascii characters will be automatically
 converted to byte strings.

 .. attribute:: target

 The target of an HTTP request, e.g. ``b"/index.html"``, or one of the
 more exotic formats described in `RFC 7320, section 5.3
 <https://tools.ietf.org/html/rfc7230#section-5.3>`_. Always a byte
 string. :term:`Bytes-like objects <bytes-like object>` and native
 strings containing only ascii characters will be automatically
 converted to byte strings.

 .. attribute:: headers

 Request headers, represented as a list of (name, value) pairs. See
 :ref:`the header normalization rules <headers-format>` for details.

 .. attribute:: http_version

 The HTTP protocol version, represented as a byte string like
 ``b"1.1"``. See :ref:`the HTTP version normalization rules
 <http_version-format>` for details.

 """

 _fields = ["method", "target", "headers", "http_version"]
 _defaults = {"http_version": b"1.1"}

 def _validate(self):
 if self.http_version == b"1.1":
 for name, value in self.headers:
 if name == b"host":
 break
 else:
 raise LocalProtocolError("Missing mandatory Host: header")

class _ResponseBase(_EventBundle):
 _fields = ["status_code", "headers", "http_version", "reason"]
 _defaults = {"http_version": b"1.1",
 "reason": b""}

[docs]class InformationalResponse(_ResponseBase):
 """An HTTP informational response.

 Fields:

 .. attribute:: status_code

 The status code of this response, as an integer. For an
 :class:`InformationalResponse`, this is always in the range [100,
 200).

 .. attribute:: headers

 Request headers, represented as a list of (name, value) pairs. See
 :ref:`the header normalization rules <headers-format>` for
 details.

 .. attribute:: http_version

 The HTTP protocol version, represented as a byte string like
 ``b"1.1"``. See :ref:`the HTTP version normalization rules
 <http_version-format>` for details.

 .. attribute:: reason

 The reason phrase of this response, as a byte string. For example:
 ``b"OK"``, or ``b"Not Found"``.

 """

 def _validate(self):
 if not (100 <= self.status_code < 200):
 raise LocalProtocolError(
 "InformationalResponse status_code should be in range "
 "[100, 200), not {}"
 .format(self.status_code))

[docs]class Response(_ResponseBase):
 """The beginning of an HTTP response.

 Fields:

 .. attribute:: status_code

 The status code of this response, as an integer. For an
 :class:`Response`, this is always in the range [200,
 600).

 .. attribute:: headers

 Request headers, represented as a list of (name, value) pairs. See
 :ref:`the header normalization rules <headers-format>` for details.

 .. attribute:: http_version

 The HTTP protocol version, represented as a byte string like
 ``b"1.1"``. See :ref:`the HTTP version normalization rules
 <http_version-format>` for details.

 .. attribute:: reason

 The reason phrase of this response, as a byte string. For example:
 ``b"OK"``, or ``b"Not Found"``.

 """
 def _validate(self):
 if not (200 <= self.status_code < 600):
 raise LocalProtocolError(
 "Response status_code should be in range [200, 600), not {}"
 .format(self.status_code))

[docs]class Data(_EventBundle):
 """Part of an HTTP message body.

 Fields:

 .. attribute:: data

 A :term:`bytes-like object` containing part of a message body. Or, if
 using the ``combine=False`` argument to :meth:`Connection.send`, then
 any object that your socket writing code knows what to do with, and for
 which calling :func:`len` returns the number of bytes that will be
 written -- see :ref:`sendfile` for details.

 .. attribute:: chunk_start

 A marker that indicates whether this data object is from the start of a
 chunked transfer encoding chunk. This field is ignored when when a Data
 event is provided to :meth:`Connection.send`: it is only valid on
 events emitted from :meth:`Connection.next_event`. You probably
 shouldn't use this attribute at all; see
 :ref:`chunk-delimiters-are-bad` for details.

 .. attribute:: chunk_end

 A marker that indicates whether this data object is the last for a
 given chunked transfer encoding chunk. This field is ignored when when
 a Data event is provided to :meth:`Connection.send`: it is only valid
 on events emitted from :meth:`Connection.next_event`. You probably
 shouldn't use this attribute at all; see
 :ref:`chunk-delimiters-are-bad` for details.

 """
 _fields = ["data", "chunk_start", "chunk_end"]
 _defaults = {"chunk_start": False, "chunk_end": False}

XX FIXME: "A recipient MUST ignore (or consider as an error) any fields that
are forbidden to be sent in a trailer, since processing them as if they were
present in the header section might bypass external security filters."
https://svn.tools.ietf.org/svn/wg/httpbis/specs/rfc7230.html#chunked.trailer.part
Unfortunately, the list of forbidden fields is long and vague :-/
[docs]class EndOfMessage(_EventBundle):
 """The end of an HTTP message.

 Fields:

 .. attribute:: headers

 Default value: ``[]``

 Any trailing headers attached to this message, represented as a list of
 (name, value) pairs. See :ref:`the header normalization rules
 <headers-format>` for details.

 Must be empty unless ``Transfer-Encoding: chunked`` is in use.

 """
 _fields = ["headers"]
 _defaults = {"headers": []}

[docs]class ConnectionClosed(_EventBundle):
 """This event indicates that the sender has closed their outgoing
 connection.

 Note that this does not necessarily mean that they can't *receive* further
 data, because TCP connections are composed to two one-way channels which
 can be closed independently. See :ref:`closing` for details.

 No fields.
 """
 pass

 © Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

_static/up.png

_static/comment-close.png

_modules/h11/_connection.html

 Navigation

 		
 index

 		
 modules |

 		h11 0.7.0 documentation »

 		Module code »

 Source code for h11._connection

This contains the main Connection class. Everything in h11 revolves around
this.

Import all event types
from ._events import *
Import all state sentinels
from ._state import *
Import the internal things we need
from ._util import LocalProtocolError, RemoteProtocolError, make_sentinel
from ._state import ConnectionState, _SWITCH_UPGRADE, _SWITCH_CONNECT
from ._headers import (
 get_comma_header, set_comma_header, has_expect_100_continue,
)
from ._receivebuffer import ReceiveBuffer
from ._readers import READERS
from ._writers import WRITERS

Everything in __all__ gets re-exported as part of the h11 public API.
__all__ = ["Connection", "NEED_DATA", "PAUSED"]

NEED_DATA = make_sentinel("NEED_DATA")
PAUSED = make_sentinel("PAUSED")

If we ever have this much buffered without it making a complete parseable
event, we error out. The only time we really buffer is when reading the
request/reponse line + headers together, so this is effectively the limit on
the size of that.
#
Some precedents for defaults:
- node.js: 80 * 1024
- tomcat: 8 * 1024
- IIS: 16 * 1024
- Apache: <8 KiB per line>
DEFAULT_MAX_INCOMPLETE_EVENT_SIZE = 16 * 1024

RFC 7230's rules for connection lifecycles:
- If either side says they want to close the connection, then the connection
must close.
- HTTP/1.1 defaults to keep-alive unless someone says Connection: close
- HTTP/1.0 defaults to close unless both sides say Connection: keep-alive
(and even this is a mess -- e.g. if you're implementing a proxy then
sending Connection: keep-alive is forbidden).
#
We simplify life by simply not supporting keep-alive with HTTP/1.0 peers. So
our rule is:
- If someone says Connection: close, we will close
- If someone uses HTTP/1.0, we will close.
def _keep_alive(event):
 connection = get_comma_header(event.headers, "Connection")
 if b"close" in connection:
 return False
 if getattr(event, "http_version", b"1.1") < b"1.1":
 return False
 return True

def _body_framing(request_method, event):
 # Called when we enter SEND_BODY to figure out framing information for
 # this body.
 #
 # These are the only two events that can trigger a SEND_BODY state:
 assert type(event) in (Request, Response)
 # Returns one of:
 #
 # ("content-length", count)
 # ("chunked", ())
 # ("http/1.0", ())
 #
 # which are (lookup key, *args) for constructing body reader/writer
 # objects.
 #
 # Reference: https://tools.ietf.org/html/rfc7230#section-3.3.3
 #
 # Step 1: some responses always have an empty body, regardless of what the
 # headers say.
 if type(event) is Response:
 if (event.status_code in (204, 304)
 or request_method == b"HEAD"
 or (request_method == b"CONNECT"
 and 200 <= event.status_code < 300)):
 return ("content-length", (0,))
 # Section 3.3.3 also lists another case -- responses with status_code
 # < 200. For us these are InformationalResponses, not Responses, so
 # they can't get into this function in the first place.
 assert event.status_code >= 200

 # Step 2: check for Transfer-Encoding (T-E beats C-L):
 transfer_encodings = get_comma_header(event.headers, "Transfer-Encoding")
 if transfer_encodings:
 assert transfer_encodings == [b"chunked"]
 return ("chunked", ())

 # Step 3: check for Content-Length
 content_lengths = get_comma_header(event.headers, "Content-Length")
 if content_lengths:
 return ("content-length", (int(content_lengths[0]),))

 # Step 4: no applicable headers; fallback/default depends on type
 if type(event) is Request:
 return ("content-length", (0,))
 else:
 return ("http/1.0", ())

##
#
The main Connection class
#
##

[docs]class Connection(object):
 """An object encapsulating the state of an HTTP connection.

 Args:
 our_role: If you're implementing a client, pass :data:`h11.CLIENT`. If
 you're implementing a server, pass :data:`h11.SERVER`.

 max_incomplete_event_size (int):
 The maximum number of bytes we're willing to buffer of an
 incomplete event. In practice this mostly sets a limit on the
 maximum size of the request/response line + headers. If this is
 exceeded, then :meth:`next_event` will raise
 :exc:`RemoteProtocolError`.

 """
 def __init__(self,
 our_role,
 max_incomplete_event_size=DEFAULT_MAX_INCOMPLETE_EVENT_SIZE):
 self._max_incomplete_event_size = max_incomplete_event_size
 # State and role tracking
 if our_role not in (CLIENT, SERVER):
 raise ValueError(
 "expected CLIENT or SERVER, not {!r}".format(our_role))
 self.our_role = our_role
 if our_role is CLIENT:
 self.their_role = SERVER
 else:
 self.their_role = CLIENT
 self._cstate = ConnectionState()

 # Callables for converting data->events or vice-versa given the
 # current state
 self._writer = self._get_io_object(self.our_role, None, WRITERS)
 self._reader = self._get_io_object(self.their_role, None, READERS)

 # Holds any unprocessed received data
 self._receive_buffer = ReceiveBuffer()
 # If this is true, then it indicates that the incoming connection was
 # closed *after* the end of whatever's in self._receive_buffer:
 self._receive_buffer_closed = False

 # Extra bits of state that don't fit into the state machine.
 #
 # These two are only used to interpret framing headers for figuring
 # out how to read/write response bodies. their_http_version is also
 # made available as a convenient public API.
 self.their_http_version = None
 self._request_method = None
 # This is pure flow-control and doesn't at all affect the set of legal
 # transitions, so no need to bother ConnectionState with it:
 self.client_is_waiting_for_100_continue = False

 @property
 def states(self):
 """A dictionary like::

 {CLIENT: <client state>, SERVER: <server state>}

 See :ref:`state-machine` for details.

 """
 return dict(self._cstate.states)

 @property
 def our_state(self):
 """The current state of whichever role we are playing. See
 :ref:`state-machine` for details.
 """
 return self._cstate.states[self.our_role]

 @property
 def their_state(self):
 """The current state of whichever role we are NOT playing. See
 :ref:`state-machine` for details.
 """
 return self._cstate.states[self.their_role]

 @property
 def they_are_waiting_for_100_continue(self):
 return (self.their_role is CLIENT
 and self.client_is_waiting_for_100_continue)

[docs] def start_next_cycle(self):
 """Attempt to reset our connection state for a new request/response
 cycle.

 If both client and server are in :data:`DONE` state, then resets them
 both to :data:`IDLE` state in preparation for a new request/response
 cycle on this same connection. Otherwise, raises a
 :exc:`LocalProtocolError`.

 See :ref:`keepalive-and-pipelining`.

 """
 old_states = dict(self._cstate.states)
 self._cstate.start_next_cycle()
 self._request_method = None
 # self.their_http_version gets left alone, since it presumably lasts
 # beyond a single request/response cycle
 assert not self.client_is_waiting_for_100_continue
 self._respond_to_state_changes(old_states)

 def _process_error(self, role):
 old_states = dict(self._cstate.states)
 self._cstate.process_error(role)
 self._respond_to_state_changes(old_states)

 def _server_switch_event(self, event):
 if type(event) is InformationalResponse and event.status_code == 101:
 return _SWITCH_UPGRADE
 if type(event) is Response:
 if (_SWITCH_CONNECT in self._cstate.pending_switch_proposals
 and 200 <= event.status_code < 300):
 return _SWITCH_CONNECT
 return None

 # All events go through here
 def _process_event(self, role, event):
 # First, pass the event through the state machine to make sure it
 # succeeds.
 old_states = dict(self._cstate.states)
 if role is CLIENT and type(event) is Request:
 if event.method == b"CONNECT":
 self._cstate.process_client_switch_proposal(_SWITCH_CONNECT)
 if get_comma_header(event.headers, "Upgrade"):
 self._cstate.process_client_switch_proposal(_SWITCH_UPGRADE)
 server_switch_event = None
 if role is SERVER:
 server_switch_event = self._server_switch_event(event)
 self._cstate.process_event(role, type(event), server_switch_event)

 # Then perform the updates triggered by it.

 # self._request_method
 if type(event) is Request:
 self._request_method = event.method

 # self.their_http_version
 if (role is self.their_role
 and type(event) in (Request, Response, InformationalResponse)):
 self.their_http_version = event.http_version

 # Keep alive handling
 #
 # RFC 7230 doesn't really say what one should do if Connection: close
 # shows up on a 1xx InformationalResponse. I think the idea is that
 # this is not supposed to happen. In any case, if it does happen, we
 # ignore it.
 if type(event) in (Request, Response) and not _keep_alive(event):
 self._cstate.process_keep_alive_disabled()

 # 100-continue
 if type(event) is Request and has_expect_100_continue(event):
 self.client_is_waiting_for_100_continue = True
 if type(event) in (InformationalResponse, Response):
 self.client_is_waiting_for_100_continue = False
 if role is CLIENT and type(event) in (Data, EndOfMessage):
 self.client_is_waiting_for_100_continue = False

 self._respond_to_state_changes(old_states, event)

 def _get_io_object(self, role, event, io_dict):
 # event may be None; it's only used when entering SEND_BODY
 state = self._cstate.states[role]
 if state is SEND_BODY:
 # Special case: the io_dict has a dict of reader/writer factories
 # that depend on the request/response framing.
 framing_type, args = _body_framing(self._request_method, event)
 return io_dict[SEND_BODY][framing_type](*args)
 else:
 # General case: the io_dict just has the appropriate reader/writer
 # for this state
 return io_dict.get((role, state))

 # This must be called after any action that might have caused
 # self._cstate.states to change.
 def _respond_to_state_changes(self, old_states, event=None):
 # Update reader/writer
 if self.our_state != old_states[self.our_role]:
 self._writer = self._get_io_object(self.our_role, event, WRITERS)
 if self.their_state != old_states[self.their_role]:
 self._reader = self._get_io_object(self.their_role, event, READERS)

 @property
 def trailing_data(self):
 """Data that has been received, but not yet processed, represented as
 a tuple with two elements, where the first is a byte-string containing
 the unprocessed data itself, and the second is a bool that is True if
 the receive connection was closed.

 See :ref:`switching-protocols` for discussion of why you'd want this.
 """
 return (bytes(self._receive_buffer), self._receive_buffer_closed)

[docs] def receive_data(self, data):
 """Add data to our internal recieve buffer.

 This does not actually do any processing on the data, just stores
 it. To trigger processing, you have to call :meth:`next_event`.

 Args:
 data (:term:`bytes-like object`):
 The new data that was just received.

 Special case: If *data* is an empty byte-string like ``b""``,
 then this indicates that the remote side has closed the
 connection (end of file). Normally this is convenient, because
 standard Python APIs like :meth:`file.read` or
 :meth:`socket.recv` use ``b""`` to indicate end-of-file, while
 other failures to read are indicated using other mechanisms
 like raising :exc:`TimeoutError`. When using such an API you
 can just blindly pass through whatever you get from ``read``
 to :meth:`receive_data`, and everything will work.

 But, if you have an API where reading an empty string is a
 valid non-EOF condition, then you need to be aware of this and
 make sure to check for such strings and avoid passing them to
 :meth:`receive_data`.

 Returns:
 Nothing, but after calling this you should call :meth:`next_event`
 to parse the newly received data.

 Raises:
 RuntimeError:
 Raised if you pass an empty *data*, indicating EOF, and then
 pass a non-empty *data*, indicating more data that somehow
 arrived after the EOF.

 (Calling ``receive_data(b"")`` multiple times is fine,
 and equivalent to calling it once.)

 """
 if data:
 if self._receive_buffer_closed:
 raise RuntimeError(
 "received close, then received more data?")
 self._receive_buffer += data
 else:
 self._receive_buffer_closed = True

 def _extract_next_receive_event(self):
 state = self.their_state
 # We don't pause immediately when they enter DONE, because even in
 # DONE state we can still process a ConnectionClosed() event. But
 # if we have data in our buffer, then we definitely aren't getting
 # a ConnectionClosed() immediately and we need to pause.
 if state is DONE and self._receive_buffer:
 return PAUSED
 if state is MIGHT_SWITCH_PROTOCOL or state is SWITCHED_PROTOCOL:
 return PAUSED
 assert self._reader is not None
 event = self._reader(self._receive_buffer)
 if event is None:
 if not self._receive_buffer and self._receive_buffer_closed:
 # In some unusual cases (basically just HTTP/1.0 bodies), EOF
 # triggers an actual protocol event; in that case, we want to
 # return that event, and then the state will change and we'll
 # get called again to generate the actual ConnectionClosed().
 if hasattr(self._reader, "read_eof"):
 event = self._reader.read_eof()
 else:
 event = ConnectionClosed()
 if event is None:
 event = NEED_DATA
 return event

[docs] def next_event(self):
 """Parse the next event out of our receive buffer, update our internal
 state, and return it.

 This is a mutating operation -- think of it like calling :func:`next`
 on an iterator.

 Returns:
 One of three things:

 1) An event object -- see :ref:`events`.

 2) The special constant :data:`NEED_DATA`, which indicates that
 you need to read more data from your socket and pass it to
 :meth:`receive_data` before this method will be able to return
 any more events.

 3) The special constant :data:`PAUSED`, which indicates that we
 are not in a state where we can process incoming data (usually
 because the peer has finished their part of the current
 request/response cycle, and you have not yet called
 :meth:`start_next_cycle`). See :ref:`flow-control` for details.

 Raises:
 RemoteProtocolError:
 The peer has misbehaved. You should close the connection
 (possibly after sending some kind of 4xx response).

 Once this method returns :class:`ConnectionClosed` once, then all
 subsequent calls will also return :class:`ConnectionClosed`.

 If this method raises any exception besides :exc:`RemoteProtocolError`
 then that's a bug -- if it happens please file a bug report!

 If this method raises any exception then it also sets
 :attr:`Connection.their_state` to :data:`ERROR` -- see
 :ref:`error-handling` for discussion.

 """

 if self.their_state is ERROR:
 raise RemoteProtocolError(
 "Can't receive data when peer state is ERROR")
 try:
 event = self._extract_next_receive_event()
 if event not in [NEED_DATA, PAUSED]:
 self._process_event(self.their_role, event)
 self._receive_buffer.compress()
 if event is NEED_DATA:
 if len(self._receive_buffer) > self._max_incomplete_event_size:
 # 431 is "Request header fields too large" which is pretty
 # much the only situation where we can get here
 raise RemoteProtocolError("Receive buffer too long",
 error_status_hint=431)
 if self._receive_buffer_closed:
 # We're still trying to complete some event, but that's
 # never going to happen because no more data is coming
 raise RemoteProtocolError(
 "peer unexpectedly closed connection")
 return event
 except BaseException as exc:
 self._process_error(self.their_role)
 if isinstance(exc, LocalProtocolError):
 exc._reraise_as_remote_protocol_error()
 else:
 raise

[docs] def send(self, event):
 """Convert a high-level event into bytes that can be sent to the peer,
 while updating our internal state machine.

 Args:
 event: The :ref:`event <events>` to send.

 Returns:
 If ``type(event) is ConnectionClosed``, then returns
 ``None``. Otherwise, returns a :term:`bytes-like object`.

 Raises:
 LocalProtocolError:
 Sending this event at this time would violate our
 understanding of the HTTP/1.1 protocol.

 If this method raises any exception then it also sets
 :attr:`Connection.our_state` to :data:`ERROR` -- see
 :ref:`error-handling` for discussion.

 """
 data_list = self.send_with_data_passthrough(event)
 if data_list is None:
 return None
 else:
 return b"".join(data_list)

[docs] def send_with_data_passthrough(self, event):
 """Identical to :meth:`send`, except that in situations where
 :meth:`send` returns a single :term:`bytes-like object`, this instead
 returns a list of them -- and when sending a :class:`Data` event, this
 list is guaranteed to contain the exact object you passed in as
 :attr:`Data.data`. See :ref:`sendfile` for discussion.

 """
 if self.our_state is ERROR:
 raise LocalProtocolError(
 "Can't send data when our state is ERROR")
 try:
 if type(event) is Response:
 self._clean_up_response_headers_for_sending(event)
 # We want to call _process_event before calling the writer,
 # because if someone tries to do something invalid then this will
 # give a sensible error message, while our writers all just assume
 # they will only receive valid events. But, _process_event might
 # change self._writer. So we have to do a little dance:
 writer = self._writer
 self._process_event(self.our_role, event)
 if type(event) is ConnectionClosed:
 return None
 else:
 # In any situation where writer is None, process_event should
 # have raised ProtocolError
 assert writer is not None
 data_list = []
 writer(event, data_list.append)
 return data_list
 except:
 self._process_error(self.our_role)
 raise

 # When sending a Response, we take responsibility for a few things:
 #
 # - Sometimes you MUST set Connection: close. We take care of those
 # times. (You can also set it yourself if you want, and if you do then
 # we'll respect that and close the connection at the right time. But you
 # don't have to worry about that unless you want to.)
 #
 # - The user has to set Content-Length if they want it. Otherwise, for
 # responses that have bodies (e.g. not HEAD), then we will automatically
 # select the right mechanism for streaming a body of unknown length,
 # which depends on depending on the peer's HTTP version.
 #
 # This function's *only* responsibility is making sure headers are set up
 # right -- everything downstream just looks at the headers. There are no
 # side channels. It mutates the response event in-place (but not the
 # response.headers list object).
 def _clean_up_response_headers_for_sending(self, response):
 assert type(response) is Response

 headers = list(response.headers)
 need_close = False

 framing_type, _ = _body_framing(self._request_method, response)
 if framing_type in ("chunked", "http/1.0"):
 # This response has a body of unknown length.
 # If our peer is HTTP/1.1, we use Transfer-Encoding: chunked
 # If our peer is HTTP/1.0, we use no framing headers, and close the
 # connection afterwards.
 #
 # Make sure to clear Content-Length (in principle user could have
 # set both and then we ignored Content-Length b/c
 # Transfer-Encoding overwrote it -- this would be naughty of them,
 # but the HTTP spec says that if our peer does this then we have
 # to fix it instead of erroring out, so we'll accord the user the
 # same respect).
 set_comma_header(headers, "Content-Length", [])
 if (self.their_http_version is None
 or self.their_http_version < b"1.1"):
 # Either we never got a valid request and are sending back an
 # error (their_http_version is None), so we assume the worst;
 # or else we did get a valid HTTP/1.0 request, so we know that
 # they don't understand chunked encoding.
 set_comma_header(headers, "Transfer-Encoding", [])
 # This is actually redundant ATM, since currently we
 # unconditionally disable keep-alive when talking to HTTP/1.0
 # peers. But let's be defensive just in case we add
 # Connection: keep-alive support later:
 need_close = True
 else:
 set_comma_header(headers, "Transfer-Encoding", ["chunked"])

 if not self._cstate.keep_alive or need_close:
 # Make sure Connection: close is set
 connection = set(get_comma_header(headers, "Connection"))
 connection.discard(b"keep-alive")
 connection.add(b"close")
 set_comma_header(headers, "Connection", sorted(connection))

 response.headers = headers

 © Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

_modules/h11/_util.html

 Navigation

 		
 index

 		
 modules |

 		h11 0.7.0 documentation »

 		Module code »

 Source code for h11._util

import sys

__all__ = ["ProtocolError", "LocalProtocolError", "RemoteProtocolError",
 "validate", "make_sentinel", "bytesify"]

[docs]class ProtocolError(Exception):
 """Exception indicating a violation of the HTTP/1.1 protocol.

 This as an abstract base class, with two concrete base classes:
 :exc:`LocalProtocolError`, which indicates that you tried to do something
 that HTTP/1.1 says is illegal, and :exc:`RemoteProtocolError`, which
 indicates that the remote peer tried to do something that HTTP/1.1 says is
 illegal. See :ref:`error-handling` for details.

 In addition to the normal :exc:`Exception` features, it has one attribute:

 .. attribute:: error_status_hint

 This gives a suggestion as to what status code a server might use if
 this error occurred as part of a request.

 For a :exc:`RemoteProtocolError`, this is useful as a suggestion for
 how you might want to respond to a misbehaving peer, if you're
 implementing a server.

 For a :exc:`LocalProtocolError`, this can be taken as a suggestion for
 how your peer might have responded to *you* if h11 had allowed you to
 continue.

 The default is 400 Bad Request, a generic catch-all for protocol
 violations.

 """
 def __init__(self, msg, error_status_hint=400):
 if type(self) is ProtocolError:
 raise TypeError("tried to directly instantiate ProtocolError")
 Exception.__init__(self, msg)
 self.error_status_hint = error_status_hint

Strategy: there are a number of public APIs where a LocalProtocolError can
be raised (send(), all the different event constructors, ...), and only one
public API where RemoteProtocolError can be raised
(receive_data()). Therefore we always raise LocalProtocolError internally,
and then receive_data will translate this into a RemoteProtocolError.
#
Internally:
LocalProtocolError is the generic "ProtocolError".
Externally:
LocalProtocolError is for local errors and RemoteProtocolError is for
remote errors.
[docs]class LocalProtocolError(ProtocolError):
 def _reraise_as_remote_protocol_error(self):
 # After catching a LocalProtocolError, use this method to re-raise it
 # as a RemoteProtocolError. This method must be called from inside an
 # except: block.
 #
 # An easy way to get an equivalent RemoteProtocolError is just to
 # modify 'self' in place.
 self.__class__ = RemoteProtocolError
 # But the re-raising is somewhat non-trivial -- you might think that
 # now that we've modified the in-flight exception object, that just
 # doing 'raise' to re-raise it would be enough. But it turns out that
 # this doesn't work, because Python tracks the exception type
 # (exc_info[0]) separately from the exception object (exc_info[1]),
 # and we only modified the latter. So we really do need to re-raise
 # the new type explicitly.
 if sys.version_info[0] >= 3:
 # On py3, the traceback is part of the exception object, so our
 # in-place modification preserved it and we can just re-raise:
 raise self
 else:
 # On py2, preserving the traceback requires 3-argument
 # raise... but on py3 this is a syntax error, so we have to hide
 # it inside an exec
 exec("raise RemoteProtocolError, self, sys.exc_info()[2]")

[docs]class RemoteProtocolError(ProtocolError):
 pass

Equivalent to python 3.4's regex.fullmatch(data)
def _fullmatch(regex, data): # version specific: Python < 3.4
 match = regex.match(data)
 if match and match.end() != len(data):
 match = None
 return match

def validate(regex, data, msg="malformed data"):
 match = _fullmatch(regex, data)
 if not match:
 raise LocalProtocolError(msg)
 return match.groupdict()

Sentinel values
#
- Inherit identity-based comparison and hashing from object
- Have a nice repr
- Have a *bonus property*: type(sentinel) is sentinel
#
The bonus property is useful if you want to take the return value from
next_event() and do some sort of dispatch based on type(event).
class _SentinelBase(type):
 def __repr__(self):
 return self.__name__

def make_sentinel(name):
 cls = _SentinelBase(name, (_SentinelBase,), {})
 cls.__class__ = cls
 return cls

Used for methods, request targets, HTTP versions, header names, and header
values. Accepts ascii-strings, or bytes/bytearray/memoryview/..., and always
returns bytes.
def bytesify(s):
 # Fast-path:
 if type(s) is bytes:
 return s
 if isinstance(s, str):
 s = s.encode("ascii")
 if isinstance(s, int):
 raise TypeError("expected bytes-like object, not int")
 return bytes(s)

 © Copyright 2016, Nathaniel J. Smith.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/minus.png

_static/file.png

_static/closelabel.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		h11 0.7.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

